iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE
 (CCous

Rev D1, Page 1/48

FEATURES

- 16 bidirectional input/output stages at 24 V
- Input/output mode programmable in 4-channel blocks
- Short-circuit-proof high-side drivers with diagnosis function
- 500 mA pulse and 150 mA permanent load driving capability
- Active flyback circuit
- Load diagnosis for driver current, output voltage and impedance (cable break, resistance and short circuits)
- 10-bit A/D converter for the generation of diagnosis measurement values
- Safety devices (voltage monitor, temperature sensor with warning and shutdown features, power output enable pin)
- Programmable interrupt generation with event storage facility
- Variable digital filters for the debouncing of I/O signals
- Fast 8-bit parallel or serial SPI ${ }^{\text {TM }}$-compatible $\mu \mathrm{C}$ interface permits SPI bus and daisy chain configuration
- Logic supply from 3 V upwards

APPLICATIONS

- Industrial 24 V applications
- Lamp switches with diagnostic features
- Inductive load driver circuits for relays and valves etc.

PACKAGES

MQFP52

BLOCK DIAGRAM

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE C HaUS

DESCRIPTION

iC-JX is a bidirectional I/O device with 4×4 high-side driver stages. The input or output function can be separately selected for blocks or nibbles of four I/O stages.

Each block can also be individually programmed with various filtering options for the debouncing of I/O pin signals or overcurrent messages, with current sources for the defining of levels at the inputs (lowside sources) or for load diagnosis at the outputs (high-side sources) and also with a flash pulse function.

To enable communication with the controller the device includes a parallel interface (with eight data, five address and three control pins) and also an SPI-compatible serial interface (with one pin for the clock, chip selection, data input and data output respectively). The type of interface is selected via pin NSP.

I/O stages with an input function can record logic levels at 24 V where a programmable pull-down/pull-up current source (of up to 2 mA) either defines the level for open inputs or supplies a bias current for external switch contacts. Connecting safety circuits with integrated serial/parallel resistors to the device also enables leakage currents and short circuits to be pinpointed. The contact status can be read out using the microcontroller interface.

I/O stages with an output function drive various loads (such as lamps, cables or relays, for example) to a common ground with 150 mA of permanent current or 500 mA in pulse operation. Spikes and flyback currents are discharged by the integrated flyback circuits.

For synchronous flash display, as used for indicator lamps in plugboards, for example, a flash pulse enable can be individually set for each output to offload the controller. A common inhibiting input (POE) permits the global shut down of all outputs and can be operated by an autonomous watchdog circuit.

All output stages are short-circuit-proof and protected against thermal destruction in the event of extreme power dissipation. Each stage has its own temperature sensor which is evaluated in two stages and
generates interrupt messages for the controller. The latter is warned before the device is forcibly shut down. A short circuit also triggers an interrupt message; the current status here can be read out by the controller.

For the purpose of load diagnosis a programmable pull-up current source (of up to 2 mA) can be used to determine an initial load breakage or open loop (caused by a cable break, for example) before an output is switched on. The I/O pin status can always be read back via comparators. A load current measurement circuit then permits the load to be assessed; failed valves and faulty or wrongly implemented indicator lamps can be verified in this way. In addition, the analog measurement of voltage at the I/O pins allows safety switches to be analyzed with reference to ground, here without the driver function.

All analog measurements for the load current (per stage), for the I/O pin voltage (per stage, either referenced to Ground or VB), for the driver supply (all VB pins) , for the internal voltage reference (VBG) and for the chip temperature are made available to the microcontroller as digital measurements by an integrated A/D converter which has 10 bits of resolution.

An interrupt pipeline which limits the loss of interrupts allows reliable processing of interrupts by the microcontroller. Registers provide information as to current events; messages can be individually enabled for all available interrupt sources.
iC-JX monitors all supply voltages and also the GND-D-GNDA connection to ground.

Monitored separately, undervoltage in the range of 2.5 V at analog supply VCC or even short disruption of digital supply VDD causes all registers to be reset and the output stages to be shut down.
Undervoltage at 24 V driver supply VB triggers a shutdown of the output stages without deleting the contents of the registers.

Diodes protect all inputs and outputs against destruction by ESD. iC-JX is also immune to burst transients according to IEC 1000-4-4 (4 kV; previously IEC 801-4).

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE Hous

Rev D1, Page 3/48

CONTENTS

PACKAGING INFORMATION 4
PIN CONFIGURATION MQFP52, pitch 0.65 mm4
ABSOLUTE MAXIMUM RATINGS 5
THERMAL DATA 5
ELECTRICAL CHARACTERISTICS 6
CHARACTERISTICS: DIAGRAMS 11
OPERATING REQUIREMENTS 12
Parallel $\mu \mathrm{C}$ Interface 12
Serial μ C Interface (SPI) 13
CONFIGURATION PARAMETERS 14
REGISTER OVERVIEW 15
REGISTER DETAILS 16
Control Word 1: I/O filters 16
Control Word 2: I/O pin functions 17
Control Word 3: flash pulse and reference clock 20
Control Word 4: filter for overcurrent message 20
Control Word 5: I/O stage select for ADC-measurements 21
Control Word 6: ADC settings 23
Output configuration: high side driver 24
Output configuration: flash pulse enable 24
Pin Status: logic level change (interrupt) 25
Pin Status: logic level (status) 25
Pin Status: overcurrent (interrupt) 26
Pin Status: overcurrent (status) 26
A/D converter data 27
Interrupt Enable: input change 28
Interrupt Enable: overcurrent 28
Interrupt Messages 29
Interconnection Error, Device ID 29
DESCRIPTION OF FUNCTIONS31
Overview I/O configuration 31
I/O configuration 31
Programmable current sources 31
Enable outputs 32
Forced shutdown of output stages 32
Flash pulse settings 32
Pin RSET 32
External reset 32
Device identification 32
Operation without the external CLK signal 32
ADC measurements 33
A/D converter data 35
Interrupts 36
I/O stages configured as input: logic level status and Change-of-input Message 36
I/O stages configured as output: monitor logic level status 37
Overcurrent messages 37
Temperature monitoring 37
Undervoltage detection: VCC and VDD 38
Undervoltage detection: VB1... 4 38
Pin monitoring GNDD and GNDA 38
Burst detection at VDD 38
I/O INTERFACES 39
Parallel interface 39
Parallel interface: reading and writing data 39
SPI interface 40
SPI: Setting address of an iC-JX 43
SPI: Reading single data from an iC-JX 43
SPI: Reading multiple data from an iC-JX 44
SPI: Writing single/multiple data to an iC-JX 45
SPI: Error handling 45
DESIGN REVIEW: Notes On Chip Functions 46
REVISION HISTORY 47

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE HoUS

Rev D1, Page 4/48

PACKAGING INFORMATION MQFP52 to JEDEC Standard

PIN CONFIGURATION MQFP52, pitch 0.65 mm

PIN FUNCTIONS

No. Name	Function	
1	NRD	Not Read Enable
2	NWR	Not Write Enable
3	NCS	Not Chip Select
4	VCC	Supply Voltage (analog, 3...5.5 V)
5	NSP	Not Serial / Parallel (Mode)
6	GNDA	Ground (analog)
7	RSET	Resistor Setting (10 k Ω)
8	A3	Address Bus
9	A1	Address Bus
10	D7	Data Bus
11	D5	Data Bus
12	D3	Data Bus
13	D1	Data Bus
14	POE	Power Output Enable
15	GNDA	Ground (analog)
16	IO16	I/O Stage 16
17	IO15	I/O Stage 15
18	VB4	Supply Voltage for I/O Stages 13... 16
19	IO14	I/O Stage 14
20	IO13	I/O Stage 13
21	IO12	I/O Stage 12

PIN FUNCTIONS
No. Name Function
22 IO11 I/O Stage 11
23 VB3 Supply Voltage for I/O Stages 9... 12
24 IO10 I/O Stage 10
25 IO9 I/O Stage 9

26 GNDA Ground (analog)
27 NINT Not Interrupt
28 D0 Data Bus
29 D2 Data Bus
30 D4 Data Bus
31 D6 Data Bus
32 A0 Address Bus
33 A2 Address Bus
34 A4 Address Bus
35 VDD Supply Voltage (logic, 3...5.5 V)
36 NRES Not Reset
37 BLFQ Blink Frequency
38 GNDD Ground (logic)
39 CLK Clock (optional)
40 GNDA Ground (analog)
41 IO1 I/O Stage 1
42 IO2 I/O Stage 2
43 VB1 Supply Voltage for I/O Stages 1... 4
44 IO3 I/O Stage 3
45 IO4 I/O Stage 4
46 IO5 I/O Stage 5
47 IO6 I/O Stage 6
48 VB2 Supply Voltage for I/O Stages 5... 8
49 IO7 I/O Stage 7
50 IO8 I/O Stage 8
51 GNDA Ground (analog)
52 VREF External Voltage Reference (optional)
Additional Pin Function in SPI Mode (NSP = low)

3	NCS	Not Chip Select
8	SCK	Serial Clock
9	A1	Device ID Bit 1
13	SOC	Serial Out Chain
28	SI	Serial In
29	SOB	Serial Out Bus
32	A0	Device ID Bit 0
33	A2	Select Chain / Bus
34	A4	Enable Interrupt Report SOC/SOB

Separate supply voltages at VB1.. 4 are possible. All GNDA pins must be connected up externally. GNDA must be connected to GNDD externally when just one voltage supply is available. VCC and VDD can be powered either mutually or separately.
Only the Pin 1 mark on the front or backside is determinative for package orientation (P-CODE © JX and other codes are subject to change).

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE Hous

Rev D1, Page 5/48

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed. Absolute Maximum Ratings are no Operating Conditions. Integrated circuits with system interfaces, e.g. via cable accessible pins (I/O pins, line drivers) are per principle endangered by injected interferences, which may compromise the function or durability. The robustness of the devices has to be verified by the user during system development with regards to applying standards and ensured where necessary by additional protective circuitry. By the manufacturer suggested protective circuitry is for information only and given without responsibility and has to be verified within the actual system with respect to actual interferences.
(Legend: $x=1 . .16, y=1.4$)

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
G001	VCC, VDD	Voltage at VCC, VDD		-0.3	6	V
G002	VBy	Voltage at VBy		-0.3	40	V
G003	$\mathrm{V}(\mathrm{IOx})$	Voltages at IO1... 16	IOx = off; see additional remark ${ }^{1}$	-10	40	V
G004	Idc(IOx)	Current in IO1... 16	see Figure 1	-500	150	mA
G005	Ipk(IOx)	Pulse current in IO1... 16	$\mathrm{IOx}=\mathrm{hi}, \tau=2 \mathrm{~ms}, \mathrm{~T} \leq 2 \mathrm{~s}$ see Figure 2	-1.0		A
G006	$\operatorname{Imax}()$	Current in VCC, VDD		-100	100	mA
G007	Imax(VBy)	Current in VB1... 4		-8	8	A
G008	Ic()	Current in NCS, NWR, NRD, A0...4, DO...7, NRES, CLK, BLFQ, POE, NSP, RSET, VREF	D0... 7 with input function	-20	20	mA
G009	I()	Current in D0...7, NINT,	D0... 7 with output function	-25	25	mA
G010	Ilu()	Pulse current in NCS, NWR, NRD, A0...4, D0...7, NRES, CLK, BLFQ, NINT, NSP, POE, IO1...16, RSET, VREF (latch up test)	Pulse width < $10 \mu \mathrm{~s}$, , all inputs / outputs open	-100	100	mA
G011	Vd()	ESD-voltage, all pins	HBM 100 pF discharged over $1.5 \mathrm{k} \Omega$		2	kV
G012	Vb()	Burst transients at IO1... 16	according to IEC 1000-4-4		4	kV
G013	Tj	Chip temperature		-40	150	${ }^{\circ} \mathrm{C}$
G014	Ts	Storage temperature		-40	150	${ }^{\circ} \mathrm{C}$

${ }^{1)}$ If the voltage supplies can not be guaranteed to be present at the time signals appear at the pins IO1..IO16, additional diodes or sufficient current limiting ohmic resistors have to be connected in series to the IO-pins to prevent reverse back biasing of the device.

THERMAL DATA

Operating conditions: VCC $=$ VDD $=3 \ldots 5.5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}$, all inputs on defined logic states (high or low)

Item					
No.	Symbol	Parameter	Conditions	Unit	
T01	Ta	Ambient temperature	extended temperature range on request	-40	
T02	Rthja	Thermal resistance chip/ambient	package mounted on PCB	Typ.	Max.

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 6/48

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VCC}=\mathrm{VDD}=3 \ldots 5.5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}, \mathrm{RSET}=10 \mathrm{k} \Omega \pm 1 \%$. All inputs on defined logic states (high or low), $\mathrm{Tj}=-40 \ldots 125^{\circ} \mathrm{C}$ unless otherwise stated. Functionality and parameters beyond operating conditions (for example w.r. to independent voltage supplies) are to be verified within the individual application by FMEA methods.

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
General							
001	VCC	Permissible Supply Voltage VCC		3		5.5	V
002	I(VCC)	Supply Current in VCC			10	20	mA
003	I(VCC)	Supply Current in VCC	no supply voltage VBy			30	mA
004	VDD	Permissible Supply Voltage VDD		3		5.5	V
005	I(VDD)	Supply Current in VDD (static)	all logic inputs lo $=0 \mathrm{~V}$ or hi = VDD		3	6	mA
006	I(VDD)	Supply Current in VDD (dynamic)	continuous reading cycle all 200ns, data word ' 00 ' and ' $F F$ ' is alternating read, $C L(D 0 \ldots 7)=200 \mathrm{pF}$			30	mA
007	I(VDD)	Supply Current in VDD	all logic inputs lo $=0.8 \mathrm{~V}$		3		mA
008	I(VDD)	Supply Current in VDD	all logic inputs hi $=2.0 \mathrm{~V}$		5		mA
009	VBy	Permissible Supply Voltage VB1... 4 (operating range)		12		36	V
010	I(VBy)	Supply Current in VB1... 4	$\mathrm{POE}=\mathrm{hi}, \mathrm{IOx}=$ hi, no load		7	20	mA
011	I(VBy)	Supply Current in VB1... 4	$10 x=0 f f$		5	10	mA
012	Vc()lo	ESD Clamp Voltage Io at VCC, VDD, VB1...4, RSET, VREF	$l()=-10 \mathrm{~mA}$	-1.4		-0.3	V
013	Vc() hi	ESD Clamp Voltage hi at VCC, VDD	I()$=10 \mathrm{~mA}$	6			V
014	Vc() hi	ESD Clamp Voltage hi at VB1... 4	I()$=10 \mathrm{~mA}$	30		55	V
015	Vc()lo	ESD Clamp Voltage lo at IO1... 16	$I()=10 \mathrm{~mA}, \mathrm{IOx}=\mathrm{off}$	-25		-19	V
016	Vc() hi	ESD Clamp Voltage hi at IO1... 16	I()$=10 \mathrm{~mA}$	30		55	V
017	Vc() hi	ESD Clamp Voltage hi at NCS, NWR, NRD, A0...4, NRES, CLK, BLFQ, DO...7, NINT, POE, NSP	$\mathrm{Vc}() \mathrm{hi}=\mathrm{V}()-\mathrm{VDD},$ D0... 7 as input, $\mathrm{l}()=10 \mathrm{~mA}$	0.4		1.5	V
018	Vc()lo	ESD Clamp Voltage lo at NCS, NWR, NRD, A0...4, NRES, CLK, BLFQ, DO...7, NINT, POE, NSP	D0... 7 as input, $I()=-10 \mathrm{~mA}$	-1.5		-0.4	V
019	If (IOx)	Leakage Current of I/O Pins ($x=1 . .16$) beyond operating conditions of VDD, VCC, VB	$\begin{aligned} & \mathrm{VCC}=0 \mathrm{~V} \text { and } \mathrm{VDD}=0 \mathrm{~V}, \\ & \mathrm{VBy}=2 . .30 \mathrm{~V} \end{aligned}$	-0.2			mA
I/O Stages: High-Side Driver IO1... 16							
101	Vs() hi	Saturation Voltage hi	Vs()hi = VBy - V(IOx), I(IOx) = -15mA; see Fig. 1			0.2	V
102	Vs() hi	Saturation Voltage hi	$\mathrm{Vs}() \mathrm{hi}=\mathrm{VBy}-\mathrm{V}(\mathrm{IOx}), \mathrm{I}(\mathrm{IOx})=-150 \mathrm{~mA} ;$ see Fig. 1			0.6	V
103	Vs() hi	Saturation Voltage hi for pulse load	$\begin{aligned} & \mathrm{Vs}() \mathrm{hi}=\mathrm{VBy}-\mathrm{V}(\mathrm{IOx}), \mathrm{l}(\mathrm{IOx})=-500 \mathrm{~mA}, \tau=2 \mathrm{~ms}, \\ & \mathrm{~T} \leq 2 \mathrm{~s} ; \\ & \text { see Fig. } 2 \end{aligned}$			2.3	V
104	Isc()hi	Overcurrent Cut-off	$\mathrm{V}(\mathrm{IOx})=0$.. VBy-3V	-1.6		-0.50	A
105	It()scs	Threshold Current for Overcurrent Message		-1.2		-0.51	A
106	Vc() lo	Free-wheeling Clamp Voltage low	$l(I O x)=-150 m A$	-18		-12	V
107	SR()hi	Slew Rate hi	$\mathrm{CL}=0 \ldots 100 \mathrm{pF}, \mathrm{I}(\mathrm{IOx})=-150 \mathrm{~mA}$	5		17	V/ $\mu \mathrm{s}$

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 7/48

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VCC}=\mathrm{VDD}=3 \ldots 5.5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}, \mathrm{RSET}=10 \mathrm{k} \Omega \pm 1 \%$. All inputs on defined logic states (high or low), $\mathrm{Tj}=-40 \ldots 125^{\circ} \mathrm{C}$ unless otherwise stated. Functionality and parameters beyond operating conditions (for example w.r. to independent voltage supplies) are to be verified within the individual application by FMEA methods.

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
108	SR()Io	Slew Rate lo	$C L=0 \ldots 100 \mathrm{pF}, \mathrm{l}(\mathrm{IOx})=-150 \mathrm{~mA}$	5		17	V/us
109	tplh()	Propagation Delay until IOx: Io \rightarrow hi	$\mathrm{V}(\mathrm{IOx})>\mathrm{V} 0(\mathrm{IOx})+1 \mathrm{~V}$			6	$\mu \mathrm{s}$
110	tphl()	Propagation Delay until IOx = off	$\mathrm{V}(\mathrm{IOx})<80$ \% (VBy - Vs(IOx)hi)			6	$\mu \mathrm{s}$
I/O Stages: Current Sources at IO1... 16							
201	lpd()	Pull-down Current Source ($200 \mu \mathrm{~A}$)	$\mathrm{V}(\mathrm{IOx})=3 \mathrm{~V}$.. VBy;	160	200	240	$\mu \mathrm{A}$
202	lpd()	Pull-down Current Source ($600 \mu \mathrm{~A}$)	$\mathrm{V}(\mathrm{IOx})=3 \mathrm{~V}$.. VBy;	510	600	690	$\mu \mathrm{A}$
203	lpd()	Pull-down Current Source (2mA)	$V(I O x)=3 \mathrm{~V} . . \mathrm{VBy}$;	1.6	2	2.4	mA
204	lpu()	Pull-up Current Source ($200 \mu \mathrm{~A}$)	$1 \mathrm{Ox}=0$ off, $\mathrm{V}(\mathrm{IOx})=0 \mathrm{~V} . . \mathrm{VBy}-3 \mathrm{~V}$	150	200	250	$\mu \mathrm{A}$
205	Ipu()	Pull-up Current Source ($600 \mu \mathrm{~A}$)	$1 O x=o f f, \mathrm{~V}(\mathrm{IOx})=0 \mathrm{~V} . . \mathrm{VBy}-3 \mathrm{~V}$	510	600	690	$\mu \mathrm{A}$
206	Ipu()	Pull-up Current Source (2mA)	$\mathrm{IOx}=$ off, $\mathrm{V}(\mathrm{IOx})=0 \mathrm{~V} . . \mathrm{VBy}-3 \mathrm{~V}$	1.6	2	2.4	mA
207	tp()Ion	Turn-on Time Current Source active	$\mathrm{I}(\mathrm{IOx})>90 \% \operatorname{Ipd}(\mathrm{IOx})$ resp. l(IOx) > 90 \%lpu(IOx)			5	$\mu \mathrm{s}$
208	tp()loff	Turn-off Time Current Source inactive	I(IOx) < 10 \% Ipd(IOx) resp. I(IOx) < 10 \% Ipu(IOx)			5	$\mu \mathrm{s}$
209	Ifu()	Leakage Current	IOx with Input Function or Output Function with $10 x=$ off; $\mathrm{VBy}=30 \mathrm{~V}$ $\mathrm{IL} 2=\mathrm{IH} 2=\mathrm{IL} 1=\mathrm{IH} 1=\mathrm{IL} 0=\mathrm{IH} 0=0$, $\mathrm{V}(\mathrm{IOx})=0 \mathrm{~V} . . \mathrm{VBy}$	-50		70	$\mu \mathrm{A}$
210	$\operatorname{lrb}()$	Leakage Current	Conditions see Item-No. 209; $\mathrm{V}(\mathrm{IOx})=-10 \mathrm{~V} . .0 \mathrm{~V}, \mathrm{VBy}=30 \mathrm{~V}$	-1.5			mA
211	$\operatorname{lrb}()$	Leakage Current	Conditions see Item-No. 209; only Input Function $V(I O x)=V B y \ldots V B y+0.3 V$			250	$\mu \mathrm{A}$
212	$\operatorname{lrb}()$	Leakage Current	Conditions see Item-No. 209; only Input Function $\mathrm{V}(\mathrm{IOx})=\mathrm{VBy}+0.3 \mathrm{~V} \ldots \mathrm{VBy}+2 \mathrm{~V}$			1	mA
213	$\operatorname{lrb}()$	Leakage Current	no supply voltages VBy $\mathrm{V}(\mathrm{IO})_{\max }=36 \mathrm{~V}$			5	mA
I/O Stages: Comparator IO $1 . .16$							
301	Vt() hi	Threshold voltage hi	IOx with input function			82	\%VCC
302	Vt ()lo	Threshold voltage lo	IOx with input function	66			\%VCC
303	Vt()hys	Hysteresis	IOx with input function, Vt() $\mathrm{hys}=\mathrm{Vt}() \mathrm{hi}-\mathrm{Vt}() \mathrm{lo}$	100			mV
304	Vt() hi	Threshold voltage hi referenced to VBy	IOx with output function, Vt() $\mathrm{hi}=\mathrm{VBy}-\mathrm{V}(\mathrm{IOx})$	5.0			V
305	Vt()lo	Threshold voltage lo referenced to VBy	IOx with output function, Vt() $\mathrm{lo}=\mathrm{VBy}-\mathrm{V}(\mathrm{IOx})$			6.7	V
306	Vt()hys	Hysteresis	IOx with output function, Vt()hys = Vt()lo - Vt()hi	100			mV
307	tp(IOx-Dx)	Propagation Delay Input IOx to Data Output Dx	I/O-Filter inactive			20	$\mu \mathrm{s}$
Thermal Shutdown							
401	Toff1	Overtemperature threshold level 1: warning		120		145	${ }^{\circ} \mathrm{C}$
402	Ton1	Level 1 Release		115		140	${ }^{\circ} \mathrm{C}$
403	Thys1	Level 1 Hysteresis	Thys1 = Toff1 - Ton1	2		7	${ }^{\circ} \mathrm{C}$
404	Toff2	Overtemperature threshold level 2: shutdown		140		165	${ }^{\circ} \mathrm{C}$
405	Ton2	Level 2 Release		120		145	${ }^{\circ} \mathrm{C}$
406	Thys2	Level 2 Hysteresis	Thys2 = Toff2 - Ton2	13		35	${ }^{\circ} \mathrm{C}$
407	$\Delta \mathrm{T}$	Temperature Difference Level 2 to Level 1	$\Delta \mathrm{T}=$ Toff2 - Toff1	13		35	${ }^{\circ} \mathrm{C}$

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 8/48

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VCC}=\mathrm{VDD}=3 \ldots 5.5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}, \mathrm{RSET}=10 \mathrm{k} \Omega \pm 1 \%$. All inputs on defined logic states (high or low), $\mathrm{Tj}=-40 \ldots 125^{\circ} \mathrm{C}$ unless otherwise stated. Functionality and parameters beyond operating conditions (for example w.r. to independent voltage supplies) are to be verified within the individual application by FMEA methods.

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Bias and Low Voltage Detection							
501	VCCon, VDDon	Turn-on Threshold VCC, VDD (Power-on release)		2.4	2.6	2.9	V
502	VCCoff, VDDoff	Undervoltage Threshold VCC, VDD (Power-down reset)		2.3	2.5	2.8	V
503	VCChys, VDDhys	Hysteresis	$\begin{aligned} & \text { VCChys = VCCon - VCCoff, } \\ & \text { VDDhys = VDDon - VDDoff } \end{aligned}$	60	100	140	mV
504	tmin()lv	Power Down Time required for low voltage detection	$\begin{aligned} & \text { VCC }=0.8 \mathrm{~V} . . \text { VCCoff, } \\ & \text { VDD }=0.8 \mathrm{~V} . . \text { VDDoff } \end{aligned}$	1			$\mu \mathrm{s}$
505	tpoff	Propagation Delay until Reset after Low Voltage at VCC, VDD				12	$\mu \mathrm{s}$
A/D-Converter							
701	VR1	ADC - Measurement Range 1	Current and voltage measurement High at IO, SELAD = '0b001' resp. '0b010', EME = 0	$\begin{aligned} & \text { VBy - } \\ & 0.6 \mathrm{~V} \end{aligned}$		VBy	V
702	VR2	ADC - Measurement Range 2	Voltage measurement High at IO, SELAD = '0b010', EME = 1	$\begin{gathered} \hline \text { VBy - } \\ 5 \mathrm{~V} \end{gathered}$		VBy	V
703	VR3	ADC - Measurement Range 3	Voltage measurement Low at IO, SELAD = 'Ob100', EME = 0	0		0.6	V
704	VR4	ADC - Measurement Range 4	Voltage measurement Low at IO SELAD = 'Ob100'; VB or VBG measurement SELAD = 'Ob101' or. 'Ob110', EME = 1	0		5	V
705	VR5	ADC - Measurement Range 5	Total voltage measurement range SELAD = 'Ob011'	0		VB	V
706	VR6	ADC - Measurement Range 6	Temperature measurement SELAD = '0b111'	-40		125	${ }^{\circ} \mathrm{C}$
707	Vbitlo	Bit-Equivalent of voltage	EME = 0, SVREF = 1, SELAD = '0b010', '0b100'		0.66		mV
708	Vbithi	Bit-Equivalent of voltage	EME = 1, SVREF = 1, SELAD = '0b010', '0b100'		5.4		mV
709	Dtemp1	Digital value of temperature measurement 1	$\begin{aligned} & \text { SVREF }=0, \mathrm{TEMP}=(774-\text { Dtemp1 }) / \text { TKtemp1 } \\ & \mathrm{Tj}=-40^{\circ} \mathrm{C} \\ & \mathrm{Tj}=27^{\circ} \mathrm{C} \\ & \mathrm{Tj}=95^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 826 \\ & 670 \\ & 519 \end{aligned}$	$\begin{aligned} & 863 \\ & 712 \\ & 563 \end{aligned}$	$\begin{aligned} & 900 \\ & 755 \\ & 608 \end{aligned}$	
710	TKtemp1	Temperature coefficient 1	SVREF = 0	2.16	2.22	2.27	$1 /{ }^{\circ} \mathrm{C}$
711	Dtemp2	Digital value of temperature measurement 2	$\begin{aligned} & \text { SVREF }=1, \mathrm{~V}(\mathrm{VREF})=2.5 \mathrm{~V} \pm 0.2 \% \\ & \mathrm{TEMP}=(861-\text { Dtemp2 }) / \mathrm{TK} \text { Kemp2 } \\ & \mathrm{Tj}=-40^{\circ} \mathrm{C} \\ & \mathrm{Tj}=27^{\circ} \mathrm{C} \\ & \mathrm{Tj}=95^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 931 \\ & 761 \\ & 585 \\ & \hline \end{aligned}$	$\begin{aligned} & 957 \\ & 800 \\ & 632 \\ & \hline \end{aligned}$	$\begin{aligned} & 984 \\ & 839 \\ & 679 \end{aligned}$	
712	TKtemp2	Temperature coefficient 2	SVREF = 1, V(VREF) $=2.5 \mathrm{~V} \pm 0.2 \%$	2.26	2.41	2.55	$1 /^{\circ} \mathrm{C}$
713	$\mathrm{f}_{\text {ICLK }}$	Internal oscillating frequency		0.9	1.25	1.5	MHz
714	$\mathrm{t}_{\text {SAR1 }}$	Conversion time SAR-converter 1	Current measurement SELAD = '0b001'		$\begin{aligned} & 154 \text { / } \\ & \mathrm{f}_{\mathrm{ICLK}} \end{aligned}$		$\mu \mathrm{s}$
715	tsAR2	Conversion time SAR-converter 2	Voltage measurement Low resp. High; SELAD = '0b010' resp. '0b100'		$\begin{gathered} 90 / \\ \mathrm{f}_{\text {ICLK }} \end{gathered}$		$\mu \mathrm{s}$
716	$\mathrm{t}_{\text {SAR } 3}$	Conversion time SAR-converter 3	Total voltage measurement SELAD = '0b011'; VBy voltage measurement SELAD = '0b101'; VBG voltage measurement SELAD = '0b110'; temperature measurement SELAD = '0b111'		$\begin{gathered} 26 / \\ \mathrm{f}_{\mathrm{ICLK}} \end{gathered}$		$\mu \mathrm{s}$
717	DVBG,1	Digital value of VBG measurement (external reference)	SELAD = '0b110', SVREF = 1	480	520	560	
718	$\mathrm{D}_{\mathrm{VBY}, 1}$	Digital value of VBy measurement (external reference)	SVREF $=1, \mathrm{~V}(\mathrm{VBy})=36 \mathrm{~V}, \mathrm{SELAD}=$ '0b101'	940	990	1022	
719	DR ${ }_{\mathrm{VBY}, 1}$	Relative value of VBy measurement (external reference)		$\begin{aligned} & 64.6 \\ & 31.3 \end{aligned}$	$\begin{aligned} & 66.6 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 68.6 \\ & 35.2 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
720	D1 ${ }_{10,1}$	Digital value using VR1 range (external reference)	$\begin{aligned} & \text { SELAD = 'Ob010', EME = '0b0', SVREF = } 1, \\ & \mathrm{~V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-0.6 \mathrm{~V} \end{aligned}$	840	900	1022	

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE HOUS

Rev D1, Page 9/48

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC=VDD $=3 \ldots 5.5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}, \mathrm{RSET}=10 \mathrm{k} \Omega \pm 1 \%$. All inputs on defined logic states (high or low), $\mathrm{Tj}=-40 \ldots 125^{\circ} \mathrm{C}$ unless otherwise stated. Functionality and parameters beyond operating conditions (for example w.r. to independent voltage supplies) are to be verified within the individual application by FMEA methods.

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
721	DR1 ${ }_{\text {IO, }}$	Digital relative value using VR1 range (external reference)		$\begin{aligned} & 46 \\ & 12 \end{aligned}$	$\begin{aligned} & 49 \\ & 15 \end{aligned}$	$\begin{aligned} & 52 \\ & 18 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
722	D210,1	Digital value using VR2 range (external reference)	$\begin{aligned} & \text { SELAD = '0b010', EME = '0b1', SVREF = } 1, \\ & \mathrm{~V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-5.0 \mathrm{~V} \end{aligned}$	870	930	1022	
723	DR2 ${ }_{\text {IO,1 }}$	Digital relative value using VR2 range (external reference)	$\begin{aligned} & \text { SELAD = '0b010', EME = '0b1', SVREF = 1; } \\ & \text { DR2IO,1 = D2IO,1 }(\mathrm{V}) / \mathrm{D} 2_{I O}, 1 ; \\ & \mathrm{V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-2.5 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-0.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 48 \\ & 9.5 \end{aligned}$	$\begin{gathered} 50 \\ 11.5 \end{gathered}$	$\begin{aligned} & 52 \\ & 14 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
724	D3 ${ }_{\text {IO,1 }}$	Digital value using VR3 range (external reference)	$\begin{aligned} & \text { SELAD = '0b100', EME = 'Ob0', SVREF = 1, } \\ & \text { V(IOx) = 0.6 V; } \end{aligned}$	880	940	1022	
725	DR3 ${ }_{\text {IO,1 }}$	Digital relative value using VR3 range (external reference)	$\begin{aligned} & \text { SELAD = '0b100', EME = 'Ob0', SVREF = 1; } \\ & \mathrm{DR} 3_{\mathrm{IO}, 1}=\mathrm{D} 3_{\mathrm{IO}, 1}(\mathrm{~V}) / \mathrm{D} 3_{\mathrm{IO}, 1} ; \\ & \mathrm{V}(\mathrm{IOx})=0.3 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=0.1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 48 \\ 14.5 \end{gathered}$	$\begin{aligned} & 50 \\ & 16 \end{aligned}$	$\begin{gathered} 52 \\ 18.5 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
726	D4 ${ }_{\text {IO, }}$	Digital value using VR4 range (external reference)	$\begin{aligned} & \text { SELAD = '0b100', EME = '0b1', SVREF = } 1 ; \\ & \mathrm{V}(\mathrm{IOx})=5.0 \mathrm{~V} \end{aligned}$	870	930	1022	
727	DR4 ${ }_{\text {IO,1 }}$	Digital relative value using VR4 range (external reference)	$\begin{aligned} & \text { SELAD = '0b100', EME = '0b1', SVREF = 1; } \\ & \text { DR4 }{ }^{\prime}, 1=\mathrm{D} 4_{\mathrm{IO}, 1}(\mathrm{~V}) / \mathrm{D} 4_{\mathrm{IO}, 1} \\ & \mathrm{~V}(\mathrm{IOx})=2.5 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=0.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 48 \\ & 9.5 \end{aligned}$	$\begin{gathered} 50 \\ 11.5 \end{gathered}$	$\begin{aligned} & 52 \\ & 14 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
728	D5 ${ }_{\text {IO, }}$	Digital value using VR5 range (external reference)	SELAD = 'Ob011', SVREF $=1, \mathrm{~V}(\mathrm{IOx})=36.0 \mathrm{~V}$	930	980	1022	
729	DR5 ${ }_{\text {IO,1 }}$	Digital relative value using VR5 range (external reference)	$\begin{aligned} & \text { SELAD = '0b011', SVREF = 1; } \\ & \text { DR5 }{ }_{\mathrm{IO}, 1}=\mathrm{D} 5_{\mathrm{IO}, 1}(\mathrm{~V}) / \mathrm{D} 5_{\mathrm{IO}, 1} \\ & \mathrm{~V}(\mathrm{IOx})=24.0 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 64.6 \\ & 11.8 \end{aligned}$	$\begin{aligned} & 66.6 \\ & 13.8 \end{aligned}$	$\begin{aligned} & 68.6 \\ & 15.8 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
730	$\mathrm{DC}_{10,1}$	Digital value of current measurement (external reference)	SELAD = '0b001',SVREF = 1, I(IOx) = 150mA	700	800	1022	
731	$\mathrm{DRC}_{10,1}$	Relative value of current measurement (external reference)	$\begin{aligned} & \hline \text { SELAD }=\text { 'Ob001', SVREF }=1 ; \\ & \mathrm{DRC}_{\mathrm{IO}, 1}=\mathrm{DC} \mathrm{ClO}_{\mathrm{IO}, 1}(\mathrm{I}) / \mathrm{DC}_{\mathrm{IO}, 1} \\ & \mathrm{l}(\mathrm{IOx})=75 \mathrm{~mA} \\ & \mathrm{l}(\mathrm{IOx})=15 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 48 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 51 \\ & 9.2 \end{aligned}$	$\begin{gathered} 54 \\ 12.2 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
732	$\mathrm{D}_{\mathrm{VBg}, 0}$	Digital value of VBG measurement (internal reference)	SELAD = '0b110', SVREF = 0	435	460	485	
733	$\mathrm{D}_{\mathrm{VBY}, 0}$	Digital value of VBy measurement (internal reference)	SVREF $=0, \mathrm{~V}(\mathrm{VBy})=36 \mathrm{~V}, \mathrm{SELAD}=$ '0b101'	830	880	1022	
734	DR ${ }_{V B Y, 0}$	Relative value using VBy measurement (internal reference)	$\begin{aligned} & \text { SVREF }=0, \mathrm{SELAD}=\text { '0b101; } \\ & \mathrm{DR}_{\mathrm{VBY}, 0}=\mathrm{D}_{\mathrm{VBY}, 0}(\mathrm{~V}) / \mathrm{D}_{\mathrm{VBY}, 0} \\ & \mathrm{~V}(\mathrm{VBy})=24 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{VBy})=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 64.6 \\ & 31.3 \end{aligned}$	$\begin{aligned} & 66.6 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 68.6 \\ & 35.3 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
735	D1 ${ }_{10,0}$	Digital value using VR1 range (internal reference)	$\begin{aligned} & \text { SELAD = 'Ob010', EME = '0b0', SVREF = 0, } \\ & \mathrm{V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-0.6 \mathrm{~V} \end{aligned}$	760	820	1022	
736	DR1 ${ }_{\text {IO, }}$	Relative value using VR1 range (internal reference)	$\begin{aligned} & \text { SELAD = '0b010', EME = '0b0', SVREF = 0; } \\ & \text { DR1 }{ }_{\mathrm{IO}, 0}=\mathrm{D} 1_{\mathrm{IO}, 0}(\mathrm{~V}) / \mathrm{D} 1_{\mathrm{IO}, 0} \\ & \mathrm{~V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-0.3 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 46 \\ & 12 \end{aligned}$	$\begin{aligned} & 49 \\ & 15 \end{aligned}$	$\begin{aligned} & 52 \\ & 18 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
737	D2 ${ }_{\text {IO, }}$	Digital value using VR2 range (internal reference)	$\begin{aligned} & \text { SELAD = 'Ob010', EME = '0b1', SVREF = 0, } \\ & \mathrm{V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-5.0 \mathrm{~V} \end{aligned}$	790	840	1022	
738	DR2ıO,0	Relative value using VR2 range (internal reference)	$\begin{aligned} & \text { SELAD = '0b010', EME = '0b1', SVREF = 0; } \\ & \text { DR2 }{ }^{\prime}, 0=\mathrm{D} 2_{\mathrm{IO}, 0}(\mathrm{~V}) / \mathrm{D} 2_{\mathrm{IO}, 0} \\ & \mathrm{~V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-2.5 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=\mathrm{V}(\mathrm{VBy})-0.6 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 9.5 \end{aligned}$	$\begin{gathered} 50 \\ 11.5 \end{gathered}$	$\begin{aligned} & 52 \\ & 14 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
739	D3 ${ }_{\text {IO, }}$	Digital value using VR3 range (internal reference)	$\begin{aligned} & \text { SELAD = '0b100', EME = 'Ob0', SVREF = 0, } \\ & \mathrm{V}(\mathrm{IOx})=0.6 \mathrm{~V} \end{aligned}$	790	840	1022	

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 10/48

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VCC}=\mathrm{VDD}=3 \ldots 5.5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}, \mathrm{RSET}=10 \mathrm{k} \Omega \pm 1 \%$. All inputs on defined logic states (high or low), $\mathrm{Tj}=-40 \ldots 125^{\circ} \mathrm{C}$ unless otherwise stated. Functionality and parameters beyond operating conditions (for example w.r. to independent voltage supplies) are to be verified within the individual application by FMEA methods.

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
740	DR3 ${ }_{\text {IO,0 }}$	Relative value using VR3 range (internal reference)	$\begin{aligned} & \text { SELAD = '0b100', EME = 'Ob0', SVREF = 0; } \\ & \text { DR3 }{ }_{\mathrm{IO}, 0}=\mathrm{D} 3_{\mathrm{IO}, 0}(\mathrm{~V}) / \mathrm{D} 3_{\mathrm{IO}, 0} \\ & \mathrm{~V}(\mathrm{IOx})=0.3 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=0.1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 48 \\ 14.5 \end{gathered}$	$\begin{aligned} & 50 \\ & 16 \end{aligned}$	$\begin{gathered} 52 \\ 18.5 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
741	D4 ${ }_{\text {IO, }}$	Digital value using VR4 range (internal reference)	$\begin{aligned} & \text { SELAD = '0b100', EME = 'Ob1', SVREF }=0, \\ & \mathrm{~V}(\mathrm{IOx})=5.0 \mathrm{~V} \end{aligned}$	790	840	1022	
742	DR4 ${ }_{\text {IO, } 0}$	Relative value using VR4 range (internal reference)	$\begin{aligned} & \text { SELAD = '0b100', EME = '0b1', SVREF = 0; } \\ & \text { DR4 }{ }^{\prime}, 0=\mathrm{D} 4_{\mathrm{IO}, 0}(\mathrm{~V}) / \mathrm{D} 4_{\mathrm{IO}, 0} \\ & \mathrm{~V}(\mathrm{IOx})=2.5 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=0.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 48 \\ & 9.5 \end{aligned}$	$\begin{gathered} 50 \\ 11.5 \end{gathered}$	$\begin{aligned} & 52 \\ & 14 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
743	D5 ${ }_{\text {IO, }}$	Digital value using VR5 range (internal reference)	$\begin{aligned} & \text { SELAD = '0b011', SVREF = } 0 \\ & \mathrm{~V}(\mathrm{IOx})=36.0 \mathrm{~V} \end{aligned}$	810	870	1022	
744	DR5 ${ }_{\text {IO, } 0}$	Relative value using VR5 range (internal reference)	$\begin{aligned} & \text { SELAD }={ }^{\prime} 0 \mathrm{~b} 011 \text { ', SVREF }=0 ; \\ & \mathrm{DR5} 5_{\mathrm{IO}, 0}=\mathrm{D} 5_{\mathrm{IO}, 0}(\mathrm{~V}) / \mathrm{D5} 5_{\mathrm{IO}, 0} \\ & \mathrm{~V}(\mathrm{IOx})=24.0 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IOx})=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 64.6 \\ & 11.8 \end{aligned}$	$\begin{aligned} & 66.6 \\ & 13.8 \end{aligned}$	$\begin{aligned} & 68.6 \\ & 15.8 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
745	$\mathrm{DC}_{10,0}$	Digital value of current measurement (internal reference)	SELAD = '0b001', SVREF = 0, l(IOx) = 150mA	720	820	1022	
746	$\mathrm{DRC}_{10,0}$	Relative value of current measurement (internal reference)	$\begin{aligned} & \text { SELAD = '0b001', SVREF }=0 ; \\ & \mathrm{DRC}_{1 \mathrm{O}, 0}=\mathrm{DC} \mathrm{IO}_{\mathrm{IO}, \mathrm{O}}(\mathrm{I}) / \mathrm{DC}_{\mathrm{IO}, 0} \\ & \mathrm{I}(\mathrm{IOx})=75 \mathrm{~mA} \\ & \mathrm{l}(\mathrm{IOx})=15 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 48 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 51 \\ & 9.2 \end{aligned}$	$\begin{gathered} 54 \\ 12.2 \end{gathered}$	$\begin{aligned} & \text { \% } \\ & \% \end{aligned}$
747	Vrefad	Internal reference voltage for A/D-Converter	SVREF = 0	2.6	2.75	3.0	V
748	Vref	Optional external reference voltage for A/D-Converter at VREF	SVREF = 1	2.45	2.5	2.55	V
749	Ivref()	Current in VREF	SVREF = 1, SELAD \geq '0b010'		210	300	uA
Input RSET							
B01	V(RSET)	Voltage at RSET		1.15	1.22	1.30	V
B02	R(RSET)	Range value for RSET		9	10	14	k Ω
Burst-Indication							
C01	VSPon	Input On-Threshold for burst recognition		1.3		2.9	V
C02	VSPoff	Input Off-Threshold for Burst-recognition		1.4		3	V
C03	tpoff	Delay time to Reset after spike at VCC, VDD	Spike duration: 10 ns	2		110	$\mu \mathrm{s}$
Pin monitoring GNDA, GNDD							
H01	Vt() gnd	Threshold voltage for open circuit detection on pins GNDA, GNDD		35		65	mV
H02	tmin()gnd	Minimum duration for open circuit detection	$\mathrm{V}(\mathrm{GNDA}, \mathrm{GNDD})=0 \mathrm{~V} \ldots \mathrm{Vt}() \mathrm{gnd}$	1			$\mu \mathrm{s}$
H03	tpoff	Delay time to reset after open circuit detection at GNDA, GNDD				15	$\mu \mathrm{s}$
Undervoltage detection VBy ($\mathrm{y}=1 . .4$)							
101	VByon	Undervoltage message VB1... 4 on		10.6	11.2	11.8	V
102	VByoff	Undervoltage message VB1... 4 off		10.0	10.6	11.2	V
103	VByhys	Hysteresis	VByhys = VByon - VByoff	400			mV
104	tmin()lv	Minimum duration for PowerDown detection	VBy $=0.8 \mathrm{~V}$... VByoff	1			$\mu \mathrm{s}$
105	tpoff	Delay time for undervoltage message VB1... 4				6	$\mu \mathrm{s}$

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 11/48

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VCC}=\mathrm{VDD}=3 \ldots 5.5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}, \mathrm{RSET}=10 \mathrm{k} \Omega \pm 1 \%$. All inputs on defined logic states (high or low), $\mathrm{Tj}=-40 \ldots 125^{\circ} \mathrm{C}$ unless otherwise stated. Functionality and parameters beyond operating conditions (for example w.r. to independent voltage supplies) are to be verified within the individual application by FMEA methods.

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\boldsymbol{\mu C - I n t e r f a c e , ~ I / O - L o g i c , ~ F r e q u e n c y ~ d i v i d e r , ~ I n t e r r u p t ~}$							
K01	Vt() hi	Threshold voltage High at Schmit t -Trigger-Inputs NCS, NWR, NRD, AO...4, NRES, CLK, BLFQ, D0...7, NSP, POE	D0... 7 with input function			2	V
K02	$\mathrm{Vt}($) lo	Threshold voltage Low at Schmit t -Trigger-Inputs NCS, NWR, NRD, AO...4, NRES, CLK, BLFQ, D0...7, NSP, POE	D0... 7 with input function	0.8			V
K03	$\mathrm{Vt}($)hys	Schmitt-Trigger-Hysteresis at inputs NCS, NWR, NRD, A0...4, NRES, CLK, BLFQ, DO...7, NSP, POE	Vt()hys = Vt()hi - Vt()lo; D0... 7 with input function	150			mV
K04	Vs()hi	Saturation voltage high an NINT, Dx	$\begin{aligned} & \mathrm{Vs}() \mathrm{hi}=\mathrm{VDD}-\mathrm{V}() ; \\ & \mathrm{I}(\mathrm{)}=-4 \mathrm{~mA} \end{aligned}$			0.8	V
K05	Vs()lo	Saturation voltage low an NINT, Dx	$\mathrm{I}(\mathrm{)}=4 \mathrm{~mA}$			0.49	V
K06	lpd()	Pull Down current sources at A0...4, NRES, CLK, BLFQ, D0... 7 , POE	V()$=1 \mathrm{~V} . . \mathrm{VDD}$	2		70	$\mu \mathrm{A}$
K07	Ipu()	Pull Up current sources at NSP, NCS, NWR, NRD	$\mathrm{V}(\mathrm{)}=0 \mathrm{~V} . . \mathrm{VDD}-1 \mathrm{~V}$	-70		2	$\mu \mathrm{A}$
K08	tp(POE-IOx)	Delay time output enable: POE to IOx disabled	$\begin{aligned} & \mathrm{RL}=240 \Omega \ldots 1 \mathrm{k} \Omega, \mathrm{POE}: \mathrm{hi} \rightarrow \mathrm{lo} \\ & \text { to } \mathrm{V}(\mathrm{IOx})<80 \%(\mathrm{VBy}-\mathrm{Vs}(\mathrm{IOx}) \mathrm{hi}) \end{aligned}$			6	$\mu \mathrm{s}$
K09	tw()lo	Permissible pulse width for enable/disable at POE		600			ns
K10	tw()	Permissible burst pulse width at POE				100	ns
K11	tmin()nres	minimum duration for reset at NRES		200			ns
Frequency BLFQ, CLK							
P01	$\mathrm{f}_{\text {CLK }}$	frequency at CLK				1.25	MHz
P02	$\mathrm{f}_{\mathrm{BLFQ}}$	frequency at BLFQ				10	Hz

CHARACTERISTICS: DIAGRAMS

Figure 1: DC load

Figure 2: Pulse load

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE
 (C)Haus

OPERATING REQUIREMENTS: Parallel μ C Interface

Operating Conditions: VCC = VDD $=3 \ldots 5.5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}, \mathrm{RSET}=10 \mathrm{k} \Omega \pm 1 \%$
$\mathrm{Ta}=0 \ldots 70^{\circ} \mathrm{C}, \mathrm{CL}()=150 \mathrm{pF}$, input level $\mathrm{lo}=0.8 \mathrm{~V}, \mathrm{hi}=2.0 \mathrm{~V}$, reference levels according to figure 3

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
Read Cycle						
1001	$t_{\text {AR1 }}, t_{\text {AR2 }}$	Setup Time: NCS, A0... 4 set before NRD hi \rightarrow lo	see Figure 4	30		ns
1002	t_{RA}	Hold Time: NCS, A0... 4 set before NRD lo \rightarrow hi	see Figure 4	0		ns
1003	t_{RD}	Wait Time : Data valid after NRD hi \rightarrow lo	see Figure 4		120	ns
1004	t_{DF}	Hold Time: Data Bus high impedance after NRD lo \rightarrow hi	see Figure 4		65	ns
1005	t_{RL}	Required Read Signal Duration at NRD		50		ns
Write Cycle						
1006	$\mathrm{t}_{\mathrm{AW} 1}, \mathrm{t}_{\mathrm{AW} 2}$	Setup Time: NCS, A0... 4 set before NWR lo \rightarrow hi	see Figure 4	30		ns
1007	$t_{\text {DW }}$	Setup time : Data valid before NWR lo \rightarrow hi	see Figure 4	100		ns
1008	${ }^{\text {W }}$ WA	Hold time: NCS, A0... 4 stable after NWR lo \rightarrow hi	see Figure 4	10		ns
1009	$t_{\text {w }}$	Hold time: Data valid after NWR lo \rightarrow hi	see Figure 4	10		ns
1010	$\mathrm{t}_{\text {WL }}$	Required Write Signal Duration at NWR	see Figure 4	50		ns
Read/Write Timing						
1011	$\mathrm{t}_{\mathrm{cyc}}$	Recovery Time between cycles: NRD lo \rightarrow hi to NRD hi \rightarrow lo, NRD lo \rightarrow hi to NWR hi \rightarrow lo, NWR lo \rightarrow hi to NWR hi \rightarrow lo, NWR lo \rightarrow hi to NRD hi \rightarrow lo	see Figure 4	165		ns

Figure 3: Reference levels for displayed values of time

Figure 4: Read and write cycle for the parallel interface

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE
 (10) Hous

Rev D1, Page 13/48

OPERATING REQUIREMENTS: Serial μ C Interface (SPI)

Operating Conditions: VCC $=\mathrm{VDD}=3 . .5 .5 \mathrm{~V}, \mathrm{VBy}=12 \ldots 36 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GNDD}=0 \mathrm{~V}, \mathrm{RSET}=10 \mathrm{k} \Omega \pm 1 \%$
$\mathrm{Ta}=0 \ldots 70^{\circ} \mathrm{C}, \mathrm{CL}()=150 \mathrm{pF}$, input level $\mathrm{lo}=0.8 \mathrm{~V}, \mathrm{hi}=2.0 \mathrm{~V}$, reference levels according to figure 3

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
I101	$\mathrm{t}_{\mathrm{sCCL}}$	Setup time: NCS hi \rightarrow lo to SCK(A3) lo \rightarrow hi	see Figure 5	50		ns
1102	$\mathrm{t}_{\mathrm{sDCL}}$	Setup time: SI(D0) stable before $\operatorname{SCK}(\mathrm{A} 3)$ lo \rightarrow hi	see Figure 5	40		ns
1103	thDCL	Hold time: SI(D0) stable after SCK(A3) lo \rightarrow hi	see Figure 5	30		ns
I104	$\mathrm{t}_{\mathrm{CLh}}$	Clock duration SCK(A3) hi	see Figure 5	165		ns
1105	$\mathrm{t}_{\mathrm{CLI}}$	Clock duration SCK(A3) lo	see Figure 5	165		ns
1106	$\mathrm{t}_{\text {cSh }}$	Pulse duration NCS hi	see Figure 5	100		ns
1107	$\mathrm{t}_{\text {pCLD }}$	Delay time: SOC(D1) resp. SOB(D2) stable after SCK(A3) hi \rightarrow lo	see Figure 5	0	145	ns
1108	$\mathrm{t}_{\text {pCSD }}$	Delay time: SOC(D1) resp. SOB(D2) high impedance after NCS lo \rightarrow hi	see Figure 5	0	145	ns

Figure 5: $\mu \mathrm{C}$ interface in SPI mode

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE HaUS

CONFIGURATION PARAMETERS

Register Overview Page 15	Pin Status: logic level change Page 25 DCH16... 1 Change of Input Messages, Interrupt
Control Word 1: Page 16	
BYP3... 0 I/O-Filter-Bypass	Pin Status: Overcurrent Page 26
FL1... 0 I/O-Filter Time	ISCI16... 1 Overcurrent-Messages, Interrupt
FH1... 0 I/O-Filter Time	SC16... 1 Overcurrent-Status, Status
Control Word 2: Page 18 P P 18	
NIOH, NIOL I/O-Pin: input/output	A/D Converter Data Page Pay 27
IL2... 0 Current sources	D9... 0 ADC-Measurement Value
IH2... 0 Current sources	
	Interrupt-Enable Page 28
Control Word 3: Page 20	IEN16... 1 Input Change Enable
PN1... 0 Flash Frequency Settings	SCEN16... 1 Overcurrent Enable
SEBLQ Flash Frequency Clock Source	
SECLK1... 0 System Clock	Interrupt Messages Page 29
Control Word 4: Page 21	DCHI Input Change Interrupt
EOI End of Interrupt	IET2... 1 Overtemperature Interrupt
BYPSCF Bypass Overcurrent-Message Filter	ISCS Overcurrent Interrupt
SCF3... 0 Overcurrent-Message Filter Timing	
	ET2... 1 Overtemperature
Control Word 5: . Page 22	SCS Overcurrent
SELES3...0 Select I/O-Stage for AD Converter	
	IEOC ADC Interrupt
Control Word 6: Page 23	ISD Interrupt - Bursts on VDD
SELAD2... 0 Settings for ADC-Measurements	IUSD Interrupt - Undervoltage at VDD
EW Start ADC-Measurement	IUSA Interrupt - Undervoltage at VCC
SVREF Select VREF	
	EOC ADC End-Of-Conversion
Output configuration: High side driver ... Page 24	USD Undervoltage VDD
OUT16..0 High-Side Driver Enable	USA Undervoltage VCC
Output configuration: Flash Pulse Enable Page 24	Interconnection Error, Device-ID Page 30
PEN16...0 Flash Pulse Enable	IBA Interconnection Error
	USVB Undervoltage VB
Pin Status: logic level Page 25	NRESA NRES = '0'
IN16... 1 Input Register, Status I/O-Pin	DID4... 0 Device ID

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE 4 HOUS

Rev D1, Page 15/48

REGISTER OVERVIEW

General programming register overview. Detailed description of the programming bits can be found in the chapter REGISTER DETAILS. A detailed description of the chip functions can be found in the chapter DESCRIPTION OF FUNCTIONS. For a description of the I/O interfaces and its protocols please refer to chapter I/O INTERFACES.

Table 1: Register assignment

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE
 (CCHous

Rev D1, Page 16/48

REGISTER DETAILS

The register contents and configuration possibilities are described in this chapter. A detailed description of the chip functions can be found in the chapter DESCRIPTION OF FUNCTIONS. The order of the register description is:

1. Configuration of the chip functions (I/O pins, filters, ADC, Output)
2. Status messages (general and those enabled for interrupt)
3. Interrupt configuration and interrupt messages
4. Interconnection Error and Device ID

General remark regarding the following register tables:

'-' is used for spare storage space with no function; '0' after reset.
(r) is used to mark the reset entry.
Control Word 1: I/O filters

Control Word 1A (I/O filters)								Control Word 1A (I/O filters) Addr. 0x14
								entry: 0x00
	Nibble 1: I/O-Pins $5 . .8$				Nibble 0: I/O-Pins $1 . .4$			
Bit Name	$\begin{aligned} & 7 \\ & \text { BYP1 } \end{aligned}$	6	$\begin{aligned} & 5 \\ & \mathrm{FH} 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ \mathrm{FHO} \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & \text { BYP0 } \end{aligned}$	2	$\begin{aligned} & \hline 1 \\ & \text { FL1 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \text { FLO } \end{aligned}\right.$

Control Word 1A: Nibble 1

Control Word 1A: Nibble 0					
Bit3	0	I/O filter active (r)			
BYP0	1	Bypass for I/O filters: the I/O signals are reprocessed in their unfiltered state.			
Bit1..0		FL1	FL0	Filter time ${ }^{1}$	
FL1.. 0		0	0	$(14.5 \pm 1) * \frac{1}{f(S E C L K)}$	(r)
		0	1	$(896.5 \pm 64) * \frac{1}{f(S E C L K)}$	
		1	0	$(3584.5 \pm 256) * \frac{1}{f(S E C L K)}$	
		1	1	$(7168.5 \pm 512) * \frac{1}{f(S E C L K)}$	

[^0]
iC-JX

Control Word 1B: Nibble 3

Control Word 1B: Nibble 2

Bit3	0	I/O filters active			(r)
BYP0	1	Bypass for I/O filters: the I/O signals are reprocessed in their unfiltered state.			
Bit1..0		FL1	FL0	Filter time ${ }^{1}$	
FL1.. 0		0	0	$\left.(14.5 \pm 1) * \frac{1}{f(S E C L K}\right)$	(r)
		0	1	$(896.5 \pm 64) * \frac{1}{f(S E C L K)}$	
		1	0	$(3584.5 \pm 256) * \frac{1}{f(S E C L K)}$	
		1	1	$(7168.5 \pm 512) * \frac{1}{f(S E C L K)}$	

[^1]
iC-JX

16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE
(C) Haus

Rev D1, Page 18/48

Control Word 2: I/O pin functions

Control Word 2A (I/O pin functions) \quad Addr. 0x16								
	Nibble 1: I/O-Pins 5.. 8				Nibble 0: I/O-Pins $1 . .4$			
Bit Name	$\begin{aligned} & 7 \\ & \mathrm{NIOH} \end{aligned}$	$\begin{aligned} & 6 \\ & \mathrm{IH} 2 \end{aligned}$	$\begin{aligned} & 5 \\ & \mathrm{IH} 1 \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{IHO} \end{aligned}$	$\begin{aligned} & 3 \\ & \mathrm{NIOL} \end{aligned}$	IL2	$\begin{aligned} & 1 \\ & \text { IL1 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \text { ILO } \end{aligned}\right.$

Control Word 2A: Nibble 1

$\begin{aligned} & \hline \text { Bit7 } \\ & \mathrm{NIOH} \end{aligned}$	0	Input mo Output m				(r)
$\begin{aligned} & \hline \text { Bit6.. } 4 \\ & \text { IH2.. } \end{aligned}$		IH2	IH1	IH0	Current sources	
		0	0	0	disabled	
		0	0	1	200 μ A Pull-Down	(r)
		0	1	0	600 μ A Pull-Down	
		0	1	1	2mA Pull-Down	
		1	0	0	disabled	
		1	0	1	200^A Pull-Up	
		1	1	0	600 ${ }^{\text {A P Pull-Up }}$	
		1	1	1	2mA Pull-Up	

Control Word 2A: Nibble 0

$\begin{aligned} & \hline \text { Bit3 } \\ & \text { NIOL } \end{aligned}$	$\left[\begin{array}{l} 0 \\ 1 \end{array}\right.$	Input mode Output mode				
$\begin{aligned} & \text { Bit2..0 } \\ & \text { IL2.. } 0 \end{aligned}$		IL2	IL1	ILO	Current sources	
		0	0	0	disabled	
		0	0	1	200^A Pull-Down	(r)
		0	1	0	600 μ A Pull-Down	
		0	1	1	2mA Pull-Down	
		1	0	0	disabled	
		1	0	1	200رA Pull-Up	
		1	1	0	600 μ A Pull-Up	
		1	1	1	2mA Pull-Up	

iC-JX

16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

(C)Haus

Rev D1, Page 19/48

Control Word 2B: Nibble 3

$\begin{aligned} & \hline \text { Bit7 } \\ & \mathrm{NIOH} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Input mode Output mode				
$\begin{aligned} & \hline \text { Bit6.. } 4 \\ & \text { IH2.. } 0 \end{aligned}$		IH2	IH1	IH0	Current sources	
		0	0	0	disabled	
		0	0	1	200 μ A Pull-Down	(r)
		0	1	0	600 μ A Pull-Down	
		0	1	1	2mA Pull-Down	
		1	0	0	disabled	
		1	0	1	200رA Pull-Up	
		1	1	0	600 μ A Pull-Up	
		1	1	1	2mA Pull-Up	

Control Word 2B: Nibble 2

$\begin{aligned} & \hline \text { Bit3 } \\ & \text { NIOL } \end{aligned}$	$\left[\begin{array}{l} 0 \\ 1 \end{array}\right.$	Input mode Output mode				
$\begin{aligned} & \text { Bit2.. } 0 \\ & \text { IL2.. } \end{aligned}$		IL2	IL1	ILO	Current sources	
		0	0	0	disabled	
		0	0	1	200 μ A Pull-Down	(r)
		0	1	0	600 μ A Pull-Down	
		0	1	1	2mA Pull-Down	
		1	0	0	disabled	
		1	0	1	200رA Pull-Up	
		1	1	0	$600 \mu \mathrm{~A}$ Pull-Up	
		1	1	1	2mA Pull-Up	

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE C Hous

Control Word 3: flash pulse and reference clock

Control Word 3A (flash pulse settings)							Addr. 0×18	
							Reset-state : 0x00	
	$\begin{aligned} & \text { Nibble } \\ & \text { I/O-Pi } \end{aligned}$	$3 . .16$	$\begin{aligned} & \text { Nibble } \\ & \text { I/O-Pi } \end{aligned}$		$\begin{aligned} & \text { Nibbl } \\ & \text { I/O-Pi } \end{aligned}$		$\begin{aligned} & \text { Nibble } \\ & \text { I/O-Pi } \end{aligned}$	
Bit Name	$\begin{array}{\|l\|} \hline 7 \\ \text { PN31 } \end{array}$	$\begin{aligned} & \hline 6 \\ & \text { PN30 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & \text { PN21 } \end{aligned}$	$\begin{aligned} & 4 \\ & \text { PN20 } \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \\ \text { PN11 } \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ \text { PN10 } \end{array}$	$\begin{aligned} & \hline 1 \\ & \text { PN01 } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \text { PNOO } \end{aligned}$

Control Word 3A: Nibble 0-3					
Nibble3, Bit7.. 6	PN31	PN30	Flash frequency	Flash frequency	
Nibble2, Bit5.. 4	PN21	PN20			
Nibble1, Bit3.. 2	PN11	PN10			
Nibble0, Bit1..0	PN01	PN00	SEBLQ ${ }^{1}=0$	SEBLQ ${ }^{1}=1$	
	0	0	f(BLFQ)	$\mathrm{f}(\mathrm{SECLK}) / 2^{19} \approx 2.38 \mathrm{~Hz}^{\text {a }}$	(r)
	0	1	$\mathrm{f}(\mathrm{BLFQ}) / 2$	$\mathrm{f}(\mathrm{SECLK}) / 2^{20} \approx 1.19 \mathrm{~Hz}^{\text {a }}$	
	1	0	$\mathrm{f}(\mathrm{BLFQ}) / 4$	$\mathrm{f}($ SECLK $) /{ }^{21} \approx 596 \mathrm{mHz}{ }^{\text {a }}$	
	1	1	$\mathrm{f}(\mathrm{BLFQ}) / 16$	$\mathrm{f}($ SECLK $) /{ }^{23} \approx 149 \mathrm{mHz}{ }^{\text {a }}$	

${ }^{1}$ SEBLQ: see Control Word 3B
${ }^{\text {a }}$ Flash frequency derived from system clock configured with f(SECLK ${ }^{1}$) @ 1.25 MHz

Control Word 3B (reference clock)								Addr. 0x19
								t entry: 0x00
Bit	7	6	5	4	3	2	1	0
Name	-	-	-	-	SECLK1	SECLK0	-	SEBLQ

Bit0	SEBLQ	Settings for flash frequency	(r)
SEBLQ	0	The flashing pulse is derived from the external clock signal at BLFQ The flashing pulse is derived from the system clock SECLK	

Bit3..2	SECLK1	SECLK0	Settings for system clock SECLK	(r)
SECLK1..0	0	0	Operation with the clock signal at CLK	Operation with the internal clock signal ICLK (see Elec. Charac. 713)
	0	1	Operation without the clock signal at CLK (filtering etc. deactivated)	
	1	0	reserved	
	1	1		

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 21/48

Control Word 4: filter for overcurrent message

Control Word 4 (Overcurrent message filter settings)							Addr. $0 \times 1 \mathrm{~A}$	
t entry: 0x								
					Nibble3	Nibble2	Nibble1	Nibble0
Bit	7	6	5	4	3	2		0
Name	EOI	-		BYPSCF	SCF3	SCF2	SCF1	SCF0

Bit7	EOI	Interrupt acknowledge (change-of-input, overcurrent message)	(r)
	No effect EOL "DELETE"s the interrupt message (change-of-input message; interrupt status register, overcurrent message) accepts successive interrupts from the pipeline, deletes the messages at NINT resp. D1/SOC or D2/SOB when the pipeline is empty. Bit automatically resets to '0'.	(r)	

Bit4	BYPSCF	Bypass overcurrent filter	(r)
BYPSCF	0	Filters for the overcurrent message are active Bypass for the filters: overcurrent messages are reprocessed in their unfiltered state.	

Bit3	SCFx	Filter time ${ }^{1}$ overcurrent message	
	SCF3	0	Nibble 3 $(2689.5 \pm 192) * \frac{1}{f(S E C L K)} \approx 2.15 \pm 0.15 \mathrm{~ms}^{\mathrm{a}}$ $(5378.5 \pm 384) * \overline{f(S E C L K)} \approx 4.3 \pm 0.3 \mathrm{~ms}^{\mathrm{a}}$
Bit2	0	Nibble 2 $(2689.5 \pm 192) * \frac{1}{f(S E C L K)} \approx 2.15 \pm 0.15 \mathrm{~ms}^{\mathrm{a}}$ $(5378.5 \pm 384) * \frac{1}{f(S E C L K)} \approx 4.3 \pm 0.3 \mathrm{~ms}^{\mathrm{a}}$	(r)
SCF2	0	Nibble 1 $(2689.5 \pm 192) * \frac{1}{f(S E C L K)} \approx 2.15 \pm 0.15 \mathrm{~ms}^{\mathrm{a}}$ $(5378.5 \pm 384) * \frac{1}{f(S E C L K)} \approx 4.3 \pm 0.3 \mathrm{~ms}^{\mathrm{a}}$	(r)
Bit1	0	Nibble 0 SCF1 $(2689.5 \pm 192) * \frac{1}{f(S E C L K)} \approx 2.15 \pm 0.15 \mathrm{~ms}^{\mathrm{a}}$ $(5378.5 \pm 384) * \frac{1}{f(S E C L K)} \approx 4.3 \pm 0.3 \mathrm{~ms}^{\mathrm{a}}$	(r)
Bit1	0	0	(r)
SCF0	0		

[^2]
iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 22/48
Control Word 5: I/O stage select for ADC-measurements

Control Word 5 (I/O Stage selection for AD Converter)								$\begin{aligned} & \text { Addr. } \\ & \text { 0x1B } \end{aligned}$
								entry: 0x
Bit	7	6	5	4	3	2	1	0
Name	-	-	-	-	SELES3	SELES2	SELES1	SELES0

Bit3..0	SELES3	SELES2	SELES1	SELES0	Selection of I/O stage
	0	0	0	0	I/O stage 1
	0	0	0	1	I/O stage 2
	0	0	1	0	I/O stage 3
	0	0	1	1	I/O stage 4
	0	1	0	0	I/O stage 5
	0	1	0	1	I/O stage 6
	0	1	1	0	I/O stage 7
	0	1	1	1	I/O stage 8
	1	0	0	0	I/O stage 9
	1	0	0	1	I/O stage 10
	1	0	1	0	I/O stage 11
	1	0	1	1	I/O stage 12
	1	1	0	0	I/O stage 13
	1	1	0	1	I/O stage 14
	1	1	1	0	I/O stage 15
	1	1	1	1	I/O stage 16

iC-JX

Control Word 6: ADC settings

${ }^{1}$ The corresponding I/O stage is selected via SELES(3:0) of Control Word 5 (P. 22).
${ }^{2}$ VBy ($\mathrm{y}=1 . .4$) is selected via SELES(3:0) of Control Word 5 :

- VB1 measurements apply to SELES(3:0) = 0x0...0x3,
- VB2 measurements apply to SELES(3:0) = $0 \times 4 \ldots 0 \times 7$,
- VB3 measurements apply to SELES(3:0) = 0x8...0xB and
- VB4 measurements apply to SELES(3:0) = 0xC...0xF.

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE
 (10)Hous

Rev D1, Page 24/48

Output configuration: high side driver

For I/O stages with output function: OUTx switches the high-side driver for IOx.

Output-Register A
for I/O stages with output function
\begin{tabular}{\|l
\hline
\end{tabular}
Bit
Name

Output-Register B
for I/O stages with output function
\begin{tabular}{\|l
\hline
\end{tabular}
Bit
Name

Output configuration: flash pulse enable

For I/O stages with output function: PENx enables the flash pulse for IOx. For the flash pulse to be visible at the output also OUTx has to be enabled.

Flash Pulse Enable A
Addr. 0x0E
for I/O stages with output function

								t entry:
Bit	7	6	5	4	3	2	1	0
Name	PEN8	PEN7	PEN6	PEN5	PEN4	PEN3	PEN2	PEN1

Bit7...0	0	Flash pulse "DISABLED"
PEN8...	1	Flash pulse "ENABLED"

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 25/48

Pin Status: logic level change (interrupt)

A read access to one of the registers Interrupt Status Register A/B, Overcurrent Message A/B or Change-of-input Message A/B while an interrupt message is active (DCHI, ISCI, IET1, IET2, IEOC, ISD, IUSD or IUSA) locks all of these registers against further changes: the registers are re-enabled only when reset via EOI (see P. 21). Any interrupt such as a successive logic level change interrupt message which occurs during the read-out phase and before a reset with EOI is trapped by an interrupt pipeline. If this happens, the message at NINT resp. D1/SOC or D2/SOB cannot be deleted by EOI, i.e. NINT remains low resp. D1/SOC or D2/SOB constantly remain on high. In this instance, EOI fills the overcurrent message from the pipeline.

If enabled with IENx (see P. 28) the following registers are used to indicate a state change at input IOx.
The DCHx bits may be erased selectable by re-enabling IENx after disable.

Bit7...0	0	No change of state at the input IOx or no interrupt enable
DCH8...1	1	Input IOx has had a change of state enabled for interrupt messages

Change-of-input Message B (read only) Addr. 0x03 for I/O stages in input mode								
reset entry: 0x00								
Bit	7	6	5	4	3	2	1	0
Name	DCH16	DCH15	DCH14	DCH13	DCH12	DCH11	DCH10	DCH9

Bit7...0	0	No change of state at the input IOx or no interrupt enable
DCH16...9	1	Input IOx has had a change of state enabled for interrupt messages

Pin Status: logic level (status)

INx indicates the state for IOx (via I/O filter or bypass) and does not generate any interrupts.

Input Register A (read only) reading of inputs / output feedback
Addr. 0x00 Bit Name
IN8

Input Register B (read only)
Addr. 0x01
reading of inputs / output feedback

								en
Bit	7	6	5	4	3	2	1	0
Name	IN16	IN15	IN14	IN13	IN12	IN11	IN10	IN9

Bit7...0	0	Input/Output IOx read '0'
IN16...9	1	Input/Output IOx read '1'

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE 1 C HaUS

Pin Status: overcurrent (interrupt)

A read access to one of the registers Interrupt Status Register A / B, Overcurrent Message A / B or Change-of-input Message A/B while an interrupt message is active (DCHI, ISCI, IET1, IET2, IEOC, ISD, IUSD or IUSA) locks all of these registers against further changes: the registers are re-enabled only when reset via EOI (see P. 21). Any interrupt such as a successive overcurrent interrupt message which occurs during the read-out phase and before a reset with EOI is trapped by an interrupt pipeline. If this happens, the message at NINT resp. D1/SOC or D2/SOB cannot be deleted by EOI, i.e. NINT remains low resp. D1/SOC or D2/SOB constantly remain on high. In this instance, EOI fills the overcurrent message from the pipeline.

If enabled with SCENx (see P. 28) the following registers are used to indicate an overcurrent state at output IOx. For IOx pins in input mode ' 0 ' is output. SCIx reports for IOx.
The SCIx bits may be erased selectable by re-enabling SCENx after disable.

Overcurrent Message A (read only)								Addr. 0x06				
								entry: 0×00				
Bit Name	$\mathbf{7}_{\mathrm{SCl} 8}$	$\begin{aligned} & 6 \\ & \mathrm{SCl} 7 \end{aligned}$	$\begin{aligned} & 5 \\ & \mathrm{SCl} 6 \end{aligned}$	4	$\left\lvert\, \begin{aligned} & 3 \\ & \mathrm{SCl} 4 \end{aligned}\right.$	$\left.\right\|_{\mathrm{SCl} 3} ^{2}$	1					
							SCl2	SCI1				
Bit7...0	0	No Message Output IOx has had an overcurrent state enabled for interrupt messages (short circuit)										
SCI8... 1	1											

Overcurrent Message B (read only)								Addr.
reset entry: 0x00								
Bit	7	6	5	4	3	2	1	0
Name	SCI16	SCI15	SCI14	SCI13	SCI12	SCI11	SCI10	SCI9

Bit7 ...0	0	No Message
SCI16...9	1	Output IOx has had an overcurrent state enabled for interrupt messages (short circuit)

Pin Status: overcurrent (status)

Overcurrent Status A and B can be used for error analysis and do not generate any interrupts (real time, no register). '0' is output for IOx pins in input mode. SCx reports for IOx.

Bit7...0	0	No overcurrent
SC8...1	1	Overcurrent in output IOx, e.g. through a low-side short circuit

Bit7...0	0	No overcurrent
SC16... 9	1	Overcurrent in output IOx, e.g. through a low-side short circuit

iC-JX

A/D converter data

Digitized result of the analog measurement for load current, I/O voltage, driver supply, internal voltage reference or temperature measurement. The type of A/D conversion as well as the reference voltages are configured with Control Word 6 (P. 23).

A/D-Converter Data 1 (read only)								Addr. $0 \times 0 \mathrm{~A}$
reset entry: 0x00								
Bit	7	6	5	4	3	2	1	0
Name	D9	D8	D7	D6	D5	D4	D3	D2

Bit7 $\ldots 0$	0	Bit value is 0	
D9...2	1	Bit value equals FACTOR $_{A D C}{ }^{2} 2^{n}$, with $n=9 . .2$	(r)

A/D-Converter Data 2 (read only)								
reset entry: 0×00								
Bit	7	6	5	4	3	2	1	0
Name	D1	D0	-	-	-	-	-	-

Bit7 $\ldots 0$	0	Bit value is 0	(r)
D1...0	1	Bit value equals FACTOR $_{A D C}{ }^{n} 2^{n}$, with $\mathrm{n}=1 . .0$	

[^3]
iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE 1 C Hous

Interrupt Enable: input change

IENx enables the input IOx for interrupt. The outputs IOx can not be enabled for interrupt. The registers can only be modified in input mode.

Change-of-input Interrupt Enable B for I/O stages with input function									
entry									
Bit Name	$\left\lvert\, \begin{aligned} & 7 \\ & \text { IEN16 } \end{aligned}\right.$	$\begin{array}{\|l\|l\|l\|} \hline 6 \\ \text { IEN15 } \end{array}$	$\left\lvert\, \begin{aligned} & 5 \\ & \text { IEN14 } \end{aligned}\right.$	$\begin{aligned} & 4 \\ & \text { IEN13 } \end{aligned}$	$\begin{aligned} & 3 \\ & \text { IEN12 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 2 \\ & \text { IEN11 } \end{aligned}\right.$	$\begin{aligned} & \hline 1 \\ & \text { IEN10 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \text { IEN9 } \end{aligned}\right.$	
Bit7...0 0 IEN16...9 1 "DISABLED" for interrupt "ENABLED" for interrupt: A hi \rightarrow lo or lo \rightarrow hi change of state at the input IOx triggers an interrupt.									

Interrupt Enable: overcurrent

SCENx enables the output IOx for overcurrent interrupt.

Overcurrent Interrupt Enable A								Overcurrent Interrupt Enable A Addr. 0x12
								tentry: 0×00
Bit	7	6	5	4	3	2	1	0
Name	SCEN8	SCEN7	SCEN6	SCEN5	SCEN4	SCEN3	SCEN2	SCEN1

Bit7...0	0	"DISABLED" for interrupt
SCEN8...1	1	"ENABLED" for interrupt: a short-circuit at IOx triggers an interrupt.

Overcurrent Interrupt Enable B								Addr. 0x13
(reset entry: 0x00								
Bit Name	7	$\begin{aligned} & 6 \\ & \text { SCEN15 } \end{aligned}$	$\begin{array}{\|l\|} 5 \\ \text { SCEN14 } \end{array}$	$\begin{aligned} & 4 \\ & \text { SCEN13 } \end{aligned}$	SCEN12	SCEN11	$\begin{aligned} & 1 \\ & \text { SCEN10 } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { SCEN9 } \end{aligned}$

Bit7...0	0	"DISABLED" for interrupt
SCEN16...	1	"ENABLED" for interrupt: a short-circuit at IOx triggers an interrupt.

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 29/48

Interrupt Messages

A read access to one of the registers Interrupt Status Register A/B, Over Current Message A / B or Input Change Message A/B while an interrupt message is active (DCHI, ISCI, IET1, IET2, IEOC, ISD, IUSD or IUSA) locks all of these registers against further changes: the registers are re-enabled only when reset via EOI (see P. 21). Any successive interrupts which occur at DCHI, IET2, IET1, ISCI, IEOC, ISD, IUSD and IUSA during the read-out phase and before a reset with EOI are trapped by an interrupt pipeline. If this happens, the message at NINT resp. D1/SOC or D2/SOB cannot be deleted by EOI, i.e. NINT remains low resp. D1/SOC or D2/SOB constantly remain high. In this instance, EOI fills the overcurrent message from the pipeline.

Interrupts: Change-of-input data, Overtemperature, overcurrent			
Bit7	0	No message	(r)
DCHI	1	Interrupt through change-of input message	(r)
Bit6	0	No message	
IET2	1	Interrupt through excessive temperature level 2	(r)
Bit5	0	No message	(r)
IET1	1	0	Interrupt through excessive temperature level 1
Bit4	No message		
ISCI	1	Interrupt through overcurrent message	

Real time signals: Excessive temperature status, overcurrent status			
Bit2	0	No error message	
ET2	1	Excessive temperature level 2 (shutdown)	(r)
Bit1	0	No error message	(r)
ET1	1	Excessive temperature level 1 (warning)	(r)
Bit0	0	No error message	
SCS	1	Overcurrent status (e.g. caused by low-side short circuit)	

Interrupt Status Register B (read only)								Addr. 0x05
(reset entry: 0x00								
Bit	7	6	5	4	3	2	1	0
Name	IEOC	ISD	IUSD	IUSA	-	EOC	USD	USA

Interrupts: A/D-Converter, Bursts, Undervoltage			
Bit7	0	No message IEOC	1

Real time signals: A/D-Converter, Undervoltage

Rit2	0	No message	
EOC	1	A/D conversion completed (End of Conversion)	(r)
Bit1	0	No message	(r)
USD	1	Undervoltage at VDD	$\left(\begin{array}{l}\text { (r) } \\ \hline \text { Bit0 }\end{array}\right.$
USA	0	No message	

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE
 (C) Hous

Rev D1, Page 30/48

Interconnection Error, Device ID

Interconnection Error, Device Identification (read only)								Addr. 0x1D
reset entry: 0x15								
Bit	7	6	5	4	3	2	1	0
Name	IBA	USVB	NRESA	DID4	DID3	DID2	DID1	DID0

Interconnection Error			
Bit7	0	No message	(r)
IBA	1	Interconnection error, broken bond wire at GNDA or GNDD	
Bit6	0	No message	(r)
USVB	1	Undervoltage at VB4, VB3, VB2 or VB1	(r)
Bit5	0	No message	
NRESA	1	NRES is 0	

Device ID		
Bit4..0	Device ID for iC-JX: 0b10101	(r)
DID4..		

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE
 (1) Hous

DESCRIPTION OF FUNCTIONS

Overview I/O configuration

Figure 6: Configuration of a block of four I/O stages

I/O configuration

iC-JX is a bidirectional I/O device with 4×4 high-side driver stages. The input or output function can be separately selected for blocks or nibbles of four I/O stages with Control Word 2 (Addr. 0x16 and 0x17, P. 18).

I/O stages		
Nibble	Pins	Supply Voltage
0	IO1..4	VB1
1	IO5..8	VB2
2	IO9..12	VB3
3	IO13..16	VB4

Table 2: I/O stage nibbles and corresponding pins/supply voltages

Each block can also be individually programmed with various filtering options for the debouncing of I/O pin signals (Control Word 1, Addr. 0x14 and 0x15, P. 16) or overcurrent messages (Control Word 4, Addr. 0x1A, P. 21).

Programmable current sources

The programmable pull-up- resp. pull-down current sources can be set independently of the I/O mode (either input or output mode). In both modes current values of $200 \mu \mathrm{~A}, 600 \mu \mathrm{~A}$ or 2 mA are available either as pull-up or pull down. Configuration is done with Control Word 2 (Addr. 0x16 and 0x17, P. 18 f.).

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE HOUS

Rev D1, Page 32/48

Note:

If the temperature rises above Toff2 the pull-up/down current sources are shut down and are reactivated only if the temperature falls below Ton2 (see P. 37).

Enable outputs

The I/O stages configured as output (Control Word 2 (Addr. 0×16 and 0×17, P. 18) can be enabled individually with Output-Register A/B (Addr. 0x0C, 0x0D, P. 24).

Notes:

Pin POE can disable all output stages (see Tab. 3, P. 32).

If the temperature rises above Toff2 the Output-Registers A / B are reset to disable the output transistors of the I/O stages and thus to minimize power dissipation (see P. 37).

Forced shutdown of output stages

All output stages can be forcibly shut down at input POE (see Tab. 3). This function allows a processor-independent watchdog to lock the outputs in the event of error, for example. An integrated pull-down resistor increases safety.

Forced shutdown of output stages	
Pin POE	output stages
0	disabled
1	enabled (according to Output Register A/B)

Table 3: Forced shutdown of output stages with pin POE

Flash pulse settings

The output stages can be individually set to flash mode with the registers Flash Pulse Enable A/B (Addr. 0x0E, 0x0F, P. 24). The blink or flash frequency can be derived from pin BLFQ or from system clock (SEBLQ: Control Word 3B, Addr. 0x19, P. 20). Note that also the system clock can be applied externally to pin CLK or be generated internally (SECLK: Control Word 3B, Addr. 0x19, P. 20). Different flash frequencies can be set for all four nibbles (Control Word 3A, Addr. 0x18, P.20).

Notes:

The corresponding output has to be enabled in the Output Register (Addr. 0x0C, 0x0D, P. 24) for the flash function to be visible at the output.
If the temperature rises above Toff2 the Flash Pulse Enable A/B registers are reset (see P. 37).

Pin RSET

To set the reference current needed by iC-JX an external resistor of $10 \mathrm{k} \Omega$ must be connected from RSET to ground.

External reset

A reset (NRES = 0) sets the register entries to the reset values given in the tables (see chapter REGISTER DETAILS).

Device identification

An identification code has been introduced to enable identification of iC-JX.

DID(4:0)	Addr. 0x1D; bit 4:0
Code	Device ID
0×15	iC-JX

Table 4: Device ID iC-JX

Operation without the external CLK signal

iC-JX can be operated without an external clock at pin CLK. Using Control Word 3B (Addr. 0x19, P. 20) the device can be set to an internally generated clock frequency; In this instance all filter functions remain fully available.

Via SECLK in Control Word 3B the clocked filtering for the I/O signals and overcurrent messaging can also be deactivated. The same behavior can be obtained by setting BYP0, BYP1, BYP2 and BYP3 in Control Word 1 (Addr. 0×14 and 0×15, see P. 16) together with BYPSCF in Control Word 4 (Addr. 0x1A, see P. 21); all filters are avoided by way of a bypass circuit.

Note:

When the filtering of the I/O messages and the overcurrent messages is deactivated with SECLK or BYPO.. 3 interferences in the line can lead to the unwanted display of interrupts.

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE HOUS

ADC measurements

Figure 7: ADC measurement

In the following the various ADC measurement features are described which can be configured using Control Word 6 (Addr. 0x1C, P. 23). An A/D conversion is started by setting bit EW to 1 . The end of A / D conversion is reported via EOC resp. IEOC (Interrupt Status Register, Addr. 0x05, P. 29), by a low signal '0' at NINT resp. '1' at D1/SOC or D2/SOB. The result of the conversion is stored as a 10 bit digital value in the registers A/D converter data (see P. 35).

ADC measurements: measuring current

With SELAD $=0 x 1$ the current in each output stage can be measured. The output stage is selected via SELES in Control Word 5 (Addr. 0x1B, P. 22).

The saturation voltage from an internal reference transistor is used for comparison. Each output stage has its own reference transistor in order to guarantee a precise value. The reference voltage is equivalent to the saturation voltage of the output stage transistor with a nominal current of 150 mA ; the output digital value thus corresponds to the current intensity in the output stage.

To evaluate current variations in the output stage the controller must perform an initial measurement with a known reference current. Based on this value a mon-
itoring of the load current can then be performed; e.g. failed valves and faulty or wrongly implemented indicator lamps connected to IOx can be verified in this way.

ADC measurements: measuring voltage

The iC-JX measures voltages at the I/O stages in different ranges summarized in Tab. 5

SELAD ${ }^{1}=0 \times 2$: Voltage measurement high at IO	
EME	Voltage range
0	$\begin{aligned} & \mathrm{VR} 1=(\mathrm{VBy}-0.6 \mathrm{~V}) \text { to } \mathrm{VBy} \\ & \mathrm{VR2}=(\mathrm{VBy}-5 \mathrm{~V}) \text { to } \mathrm{VBy} \end{aligned}$
SELAD = 0x4: Voltage measurement low at IO	
EME	Voltage range
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{VR} 3=0 \text { to } 0.6 \mathrm{~V} \\ & \mathrm{VR} 4=0 \text { to } 5 \mathrm{~V} \end{aligned}$
SELAD = 0x3: Overall voltage measurement range at IO	
EME	Voltage range
-	VR5 ${ }^{2}$
Notes	${ }^{1}$ Control Word 6, Addr. 0x1C 2 voltage of selected I/O stage $1 / 15$ downscaled VBy = VB1.. 4 VR1..VR5 please refer to Fig. 8

Table 5: ADC measurement: voltage ranges

iC-JX

The selection of the I/O stage is done via Control Word 5 (Addr. 0x1B, P. 22).

Figure 8: ADC measurement ranges

Note:

For the mode Overall voltage measurement range at IO the voltage at the selected I/O stage is downscaled first by a factor of $1 / 15$ using a resistive voltage divider to permit measurement of the full voltage range from rail to rail. The user must be aware of a input current drawn by the voltage divider of approximately $\mathrm{V}(\mathrm{IO}) / 200 \mathrm{k} \Omega$.

ADC Measurements: VB1.. 4 and VBG Measurements
The internal reference voltage VBG $(S E L A D=0 \times 6)$ and
the external supply voltages VB1 to VB4 (SELAD $=0 \times 5$) can also be measured. For VB1 to VB4, the voltage is downscaled first by a factor of $1 / 15$. Selection is done via SELES in Control Word 5 (Addr. 0x1B, P. 22) see Tab. 6.

SELES(3:0)	
Code	selected supply voltage VB1...VB4
$0 \times 0 \ldots 0 \times 3$	VB1
$0 \times 4 \ldots 0 \times 7$	VB2
$0 \times 8 \ldots 0 \times B$	VB3
$0 \times C \ldots 0 \times F$	VB4

Table 6: ADC measurement: VB1.. 4 selection

ADC Measurements: Temperature Measurement With SELAD = 0x7 the internal chip temperature can be determined.

ADC Measurements: Using external VREF

To improve accuracy of the A/D conversion, an external reference voltage at pin VREF can be used by setting the bit SVREF = 1 (see Control Word 6, P. 23). The value of the external voltage reference should be about $2.5 \mathrm{~V} \pm 0.2 \%$.

SVREF	
Code	Reference Voltage
0	V(Vrefad $)=2.75 \mathrm{~V}^{1}$
1	V(VREF $)=2.5 \mathrm{~V} \pm 0.2 \%$
Note	${ }^{1}$ Elec. Char. 747

Table 7: Using external VREF

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 35/48

A/D converter data

A 10 bit digital value as a result of A / D conversion is available for output currents and output voltages at a selected I/O stage, for chip temperature and supply voltages VB1.. 4 and the internal bandgap voltage VBG. Except for the current measurement, the internal voltage V (Vrefad) or an external voltage at pin VREF are used as reference. The reference source is configured using SVREF.

$\mathbf{D (9 : 2)}$	Addr. 0x0A; bit 7:0
$\mathbf{D (1 : 0)}$	Addr. 0x0B; bit 7:6
Code	RESULT
0×000	
\ldots	$D^{\prime}(9: 0) ~ *$ FACTOR $_{\text {ADC }}$
$0 \times F F F$	

Table 8: A/D converter data: calculation of ADC result voltage and current measurements

For the the digital representation of the measured voltages and currents please refer to Tab. 9 and 10, for the measured temperature refer to Tab. 11.

SVREF $=0, \mathrm{~V}($ Vrefad $)=2.75 \mathrm{~V}$ (Elec. Char. 747)	
SELAD ${ }^{1}=0 \times 1$: Current measurement IO	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
-	$182.92 * 10^{-3} \mathrm{~mA}$
SELAD $=0 \times 2$: Voltage measurement high at IO	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
0	0.726 mV
1	$5,94 \mathrm{mV}$
SELAD $=0 \times 3$: Overall voltage measurement range at IO	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
-	40.32 mV
SELAD = 0x4: Voltage measurement low at IO	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
0	0.726 mV
1	5,94 mV
SELAD = 0x5: VB1..4 voltage measurement	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
-	40.32 mV
SELAD $=0 \times 6$: VBG voltage measurement	
EME	FACTOR $_{\text {ADC }}$
-	2,688 mV
Notes	${ }^{1}$ Control Word 6, Addr. 0x1C The values are guide values, a reference measurement is recommended. Please take into account Elec. Char. 732-746.

Table 9: A/D converter data: Voltage/Current Measurements, SVREF = 0

SVREF = 1, V(VREF) $=2.5 \mathrm{~V} \pm 0.2 \%$	
SELAD ${ }^{1}=0 \times 1$: Current measurement IO	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
-	$187.5^{*} 10^{-3} \mathrm{~mA}$
SELAD $=0 \times 2$: Voltage measurement high at IO	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
0	0.66 mV
1	5.4 mV
SELAD = 0x3: Overall voltage measurement range at IO	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
-	36,65 mV
SELAD $=0 \times 4$: Voltage measurement low at IO	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
0	0.66 mV
1	5.4 mV
SELAD = 0x5: VB1.. 4 voltage measurement	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
-	36,65 mV
SELAD = 0x6: VBG voltage measurement	
EME	$\mathrm{FACTOR}_{\text {ADC }}$
-	2,443 mV
Notes	${ }^{1}$ Control Word 6, Addr. 0x1C The values are guide values, a reference measurement is recommended. Please take into account Elec. Char. 717-731.

Table 10: A/D converter data: Voltage/Current Measurements, SVREF = 1

Table 11: A/D converter data: Temperature Measurement (SELAD = 0x7)

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE Hous

Interrupts

Interrupt readings at NINT resp. D1/SOC or D2/SOB can be triggered:

- by a change of (filtered) input signal
- by an overcurrent message signaled at an I/O pin (due to a short circuit, for example)
- by undervoltage at VCC or VDD
- by bursts at VDD
- by the end of an A/D conversion
- by exceeding maximum temperature thresholds (2 stages)

Interrupt outputs for each individual I/O stage can be caused:

- by a change of input
- by a short circuit (with stages in output mode)

The relevant interrupt enables determine which messages are stored and which are displayed (Addr. $0 \times 10-0 \times 13$, see $P .28$).

Note:

The display of interrupt messages caused by excessive temperature, A/D conversion, undervoltage or bursts is not maskable; this particular function is permanently enabled.

When an event occurs which is enabled to produce an interrupt message pin NINT is set to 0 . If the device is being operated with a serial interface outputs D1/SOC or D2/SOB are set to 1 when an interrupt occurs if no communication is made via the interface itself and the interrupt messaging is enabled with pin A4 (see Tab. 15, P. 42).

By reading out the Interrupt Status Register (Addr. 0x04 and $0 \times 05, \mathrm{P} .29$) the nature of the message can be determined. In case of a change-of-input interrupt or an overcurrent interrupt the I/O stage causing the interrupt can be located. With a change-of-input message the problematic I/O stage is shown in the corresponding Change-of-input Message register (Addr. 0x02 and $0 x 03$, P. 25); with an overcurrent interrupt the Overcurrent Message register (Addr. 0x06 and 0x07, P. 26) pinpoints the I/O stage with a short circuit.

Rev D1, Page 36/48
Interrupts are deleted by setting EOI in Control Word 4 (Addr. 0x1A, P. 21). This bit then automatically resets to 0 .

Figure 9: Interrupt management

Note:

To avoid interrupt messages caused by other sources in the time between the readout of a interrupt status register (Interrupt Status Register, Change-of-input Message or Overcurrent Message) and the deletion of the current interrupt being overlooked all interrupt status registers are locked against further changes and successive interrupts are stored in a pipeline. If successive interrupts occur outputs NINT remains at '0' resp. D1/SOC or D2/SOB remain at '1' after the present interrupt has been deleted using EOI. The new interrupt source is displayed in the interrupt status register and in the specific status registers.

I/O stages configured as input: logic level status and Change-of-input Message
Any change to an input signal IOx is accepted via digital filtering only after the selected filter time has expired. The scaling factor for the filter times and the input filter bypass can be programmed separately for all four nibbles (see Control Word 1, Addr. 0×14 and $0 \times 15, ~ P . ~ 16) . ~$ The clock source for all filters can be programmed with SECLK (see Control Word 3B, Addr. 0x19, P. 20).

Input Registers A / B (Addr. 0×00 and $0 \times 01, \mathrm{P} .25$) represent the actual status of the I/O stages. A high at IOx

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE HaUS

generates a '1' at bit INx in the Input Register A/B. A low at IOx generates a '0' at bit INx.

Once the Change-of-input Message has been enabled in the Change-of-input Interrupt Enable register (Addr. 0×10 and $0 \times 11, ~ P .28$) a change of level at one of the I/O pins is signaled to the microcontroller. Interrupt pin NINT is set to 0 . If the device is operated at the serial interface a change of level is also indicated by a 1 at pin D1/SOC or D2/SOB, depending upon configuration (see SPI interface, Tab. 15, P. 42). The microcontroller can determine which I/O stage has had a change of input by reading out the Change-of-input Message Register A/B (Addr. 0x02 and 0x03, P. 25).

Note:

If during operation an I/O nibble is switched from input to output mode, all Change-of-input Messages of the corresponding I/O nibble are deleted.

I/O stages configured as output: monitor logic level status

As with the reading of inputs the feedback signals of outputs can be output in their filtered or unfiltered state. The microcontroller can determine the actual status of the I/O stages by reading out Input Register A/B (Addr. 0×00 and $0 \times 01, P .25$). A high at IOx generates a '1' at bit INx in the Input Register A/B. A low at IOx generates a '0' at bit INx.

This allows the microcontroller to make a direct check of the switching state and, with the help of the programmable high-side current sources of $200 \mu \mathrm{~A}, 600$ $\mu \mathrm{A}$ and 2 mA , to monitor the channel for any cable break before an output is switched on with the Output Register (P. 24).

Figure 10: Monitor cable break

Overcurrent messages

If an overload occurs at one of the outputs the current in IOx is limited. In this instance an interrupt message is triggered, providing relevant interrupt enables have been set for overcurrent messages (Addr. 0x12 and $0 \times 13, \mathrm{P} .28$) and the filter time set with Control Word 4 (Addr. 0x1A, P. 21) has elapsed. ISCI is then set in the Interrupt Status Register (Addr. 0x04, P. 29) and the relevant bit for the I/O stage causing the problem is set in the Overcurrent Message register (Addr. 0x06 and 0×07, P. 26). Filtering of the overcurrent message can be shut down using a bypass; this bypass can be activated for all I/O stages together using BYPSCF in Control Word 4 (Addr. 0x1A, P. 21).

At addresses 0×08 and 0×09 (see P. 26) the actual, unfiltered overcurrent status of each I/O stage can be read; a global scan of all I/O stages is also possible via bit SCS in the Interrupt Status Register. This shows whether any of the I/O stages have overcurrent at the time of the readout. This short-circuit messaging allows permanent monitoring of the output transistors and clear allocation of error message to affected I/O stages.

Temperature monitoring

iC-JX has a two-stage temperature monitor circuit (see Fig 11).

Stage 1: A warning interrupt IET1 is generated if the first temperature threshold (Toff1 at approx. $132{ }^{\circ} \mathrm{C}$) is exceeded. Suitable measures to decrease the power dissipation of the driver can be implemented using the microcontroller.

Stage 2: If the second temperature threshold is exceeded (Toff2 at approx. $152^{\circ} \mathrm{C}$), a second interrupt IET2 is generated. At the same time the I/O stage pull-up and pull-down current sources are disabled and the registers Output-Register A / B and Flash Pulse Enable A/B are reset to disable the output transistors. Once the temperature has returned to below the level of Ton2 (approx. $132{ }^{\circ} \mathrm{C}$) the pul-I-up and pull-down current sources are reactivated. Output-Register A/B and Flash Pulse Enable A/B have to be configured anew to reactivate the output stages

Status bits ET1 and ET2 statically indicate when Toff1 and Toff2 are exceeded. Interrupt messages IET1 and IET2 as well as the status bits ET1 and ET2 can be read at Interrupt Status Register A (Addr. 0x04, P. 29).

Stored interrupt message IET1 and IET2 and the display at NINT resp. D1/SOC or D2/SOB can be deleted by setting EOI to 1 in Control Word 4 (Addr. 0x1A, P. 21).

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE iCl° HaUS

Undervoltage detection: VCC and VDD

When the supply voltage at VCC or VDD is switched on the output transistors of IO1.. 16 configured as outputs are only enabled by the undervoltage detector after power-on enables VCCon or VDDon (see Elec. Char. 501) have been reached.

Should the supply voltage drop below VCCoff or VDDoff (see Elec. Char. 502) during operation, interrupt bits IUSA (for VCC) or IUSD (for VDD) are set in Interrupt Status Register B (Addr. 0x05, P. 29). The I/O stages are disabled, i.e. the output transistors are turned off. All registers and the Interrupt Status Register A/B except the interrupt bits IUSA, IUSD and ISD are reset. Statusbits USD and USA statically indicate undervoltage at VDD and VCC.

Stored interrupt messages IUSD and IUSA and the display at NINT resp. D1/SOC or D2/SOB can be deleted by setting EOI to 1 in Control Word 4 (Addr. 0x1A, P. 21).

Figure 11: Two-stage temperature monitor circuit (for Toff1/2, Ton1/2 refer to Elec. Char.)

Abstract

Note: Should the supply voltage at VCC or VDD rise to VCCon or VDDon after undervoltage detection, all registers of iC-JX except the interrupt bits IUSA, IUSD and ISD in Interrupt Status Register B have been reset.

Undervoltage detection: VB1... 4

In order to guarantee the fail-safe operation of connected loads voltages VB1.. 4 are also monitored.

If one of the voltages VBy ($\mathrm{y}=1 . .4$) drops below threshold VByoff (see Elec. Char. I02) the output transistors of the corresponding I/O Nibble are disabled. Once voltage VBy again rises above VByon (see Elec. Char. I01) the output transistors of the corresponding I/O Nibble are re-enabled.

Note that neither a device reset nor an interrupt message to the microcontroller are then triggered. The microcontroller can read out the status of the voltages VB1..4 at bit USVB in the Device ID register (Addr. $0 \times 1 \mathrm{D}, \mathrm{P} .30$). In the event of error (one of the voltages VB1.. 4 < VByoff) this bit is set to 1 .

Pin monitoring GNDD and GNDA

iC-JX includes a pin watchdog circuit which monitors the connection between the two ground pins GNDA and GNDD. The microcontroller can detect a possible error, such as a disconnected IC lead, for example, by reading bit IBA in the Interconnection Error register (Addr. $0 \times 1 \mathrm{D}, \mathrm{P} .30)$. In the event of error IBA is set to 1.

Note:

If such a case of an error is present (disconnected IC lead), then the potential of the missing ground pin is raised, which can lead to a shift of the trigger levels.

Burst detection at VDD

As in principle bursts at VDD can influence the contents of registers iC-JX monitors spikes in the supply. If any hazard is detected Bit ISD is set to 1 in the Interrupt Status Register B (Addr. 0x05, P. 29). The I/O stages are disabled, i.e. the output transistors are turned off. All registers and the Interrupt Status Register A/B except the interrupt bits IUSA, IUSD and ISD are reset.

Stored interrupt message ISD and the display at NINT resp. D1/SOC or D2/SOB can be deleted by setting EOI to 1 in Control Word 4 (Addr. 0x1A, P. 21).

Note:

After burst detection at VDD the registers of iC-JX are reset except the interrupt bits IUSA, IUSD and ISD in Interrupt Status Register B.

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE
 (C) Haus

Rev D1, Page 39/48

I/O INTERFACES

Interfaces

iC-JX can be operated with either a serial (SPI) or parallel interface. This is set using pin NSP. When this pin is connected to VDD the device works in parallel mode. With NSP connected to ground iC-JX operates in serial mode.

Interface selection	
Pin NSP	selected interface
0	SPI
1	parallel

Table 12: Selection of interface with pin NSP

Parallel interface

The parallel interface in iC-JX consists of:

- 8 data lines: D7...D0
- 5 address lines: A4 . . A0
- 3 control lines: NCS, NRD, NWR

A circuit diagram of the parallel microcontroller interface is given in Figure 12.

Parallel interface: reading and writing data

The address lines A4 ...A0 are used to select the registers in iC-JX. Address and data is accepted with the falling edge of chip select signal NCS. Control lines NRD and NWR govern read and write access

Figure 12: Example application using a parallel interface (pin NSP=1)

iC-JX

SPI interface

To reduce the number of lines running between the microcontroller and iC-JX and thus to economize on the use of optocouplers between the former and either
one or several iCs in a unit, for example, an extended serial-peripheral interface (SPI) has been integrated into iC-JX. A possible wiring is shown in Figure 13.

Figure 13: Example application using a serial interface (pin NSP=0)

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE Hous

SPI modes 0 and 3 are supported, i.e. idle level of SCK 0 or 1, acceptance of data on a rising edge. In order to ensure communication between the iC-JX and standard micro controllers, address and data words are both eight bit wide. Data is sent MSB first. The pins used for SPI communication are summarized in Tab. 13.

Pins used in SPI mode	
Pin	Function
A3/SCK	clock input
NCS	chip select input
D0/SI	data input
D1/SOC	data output chain ${ }^{1}$
D2/SOB	data output bus ${ }^{1}$
Note	${ }^{1}$ see Tab. 14

The configuration (bus or chain) is set using pin A2. If A2 is at 0 , the devices are in chain operation; if $A 2$ is at ' 1 ', the chips switch to bus configuration.

SPI configuration (bus or chain)		
Pin A2	selected configuration	data output
0	chain	SOC
1	bus	SOB

Table 14: Selection of bus or chain SPI configuration with pin A2

Several iC-JXs can be operated on an SPI (see Fig. 14; SPI daisy chain: max. 4; SPI Bus with shared NCS: max. 4; SPI Bus with individual slaves: no limitation).

Table 13: Pins used in SPI Mode (NSP = 0)

Figure 14: Possible SPI configurations (pin NSP=0)

In chain configuration (see Figure 14, top) output SOC of a device is connected up to the SI data input of the
following chip; output SOB is not used. During the ad-

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE 1 C HaUS

dressing sequence (1 byte of communication) all iC-JXs are switched through transparently so that all devices receive the transmitted address simultaneously. Only the addressed chip then goes into data transfer mode; the others remain transparent so that communication between the controller and addressed iC-JX can take place without delay. It must be noted here that even in transparent mode each iC-JX has a certain transmit time which has an effect on the maximum data frequency of the overall system. The advantage of this configuration lies in the fact that it is possible to read out the values of an address in all devices very quickly.

In bus configuration (see Figure 14, center) all SI inputs and SOB outputs are switched in parallel; the SOC outputs are not used. Addressing the devices ensures that only one of the chips outputs data to SOB; the outputs of the inactive iCs are switched to tristate. This type of configuration differs from chain configuration in that it permits higher clock rates and also allows up to four iC-JXs to be connected up to an SPI bus.

If no communication takes place on the SPI the chips can send interrupts to the controller by switching the master MISO line to 1 . To this end all iC-JXs in chain
configuration are switched through transparently (see Figure 15). In case of an interrupt message SOC is set to 1 . In bus configuration the relevant chip drives a 1 at its SOB output towards the pull-down resistors at the outputs of the other devices.

Using pin A4 settings can be made as to whether interrupts are signaled to the master via the SOB or SOC pin (see Tab. 15).

Note:

The interrupt messaging via SOB must be deactivated in bus configuration if further non iC-JX devices are present on the SPI bus as otherwise data can collide on the bus which is not desirable here.

Interrupt Messaging via SOB/SOC	
Pin A4	interrupt message to pin SOB/SOC
0	disabled
1	enabled $\left.{ }^{*}\right)$
Note	${ }^{*}$) SOB/SOC $=1$ in case of an interrupt

Table 15: Interrupt Messaging via SOB/SOC configuration with pin A4

Figure 15: Addressing and interrupt messaging scheme in chain configuration

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE ${ }^{\circ}$ Hous

SPI: Setting address of an iC-JX

Figure 16: SPI: Addressing sequence

The first byte of communication (see Fig. 16) consists of the 2-bit chip address (BA1:0), the 5-bit register address (RA4:0) and a read-not-write (RNW) bit. The
device ID is set for each chip using pins $A(1: 0)$. In chain configuration up to four devices can thus be connected to a SPI master.

SPI: Reading single data from an iC-JX

Figure 17: SPI: Reading a single register value

The following describes the SPI data transmission for a single read access (see Fig. 17). The first byte sent by the controller (master) is the address the data is to be read out from (addressing sequence see Fig. 16). The activated iC-JX (slave) sends the address back in the next byte by way of verification while the master sends a NOP ($0 x 00$) byte. The slave then sends the required data. The master sends byte NoB which is the number of bytes to be read out minus one. To increase security the number byte NoB is split into two nibbles which are encoded with the original and inverted value ($0 x 0 \mathrm{~F}$ when reading 1 byte, see Tab. 17).

If the user does not need the verification mechanisms of the master and the slave to validate the sent data, the master may terminate the read cycle at this point. The master otherwise sends the received data back to the slave which then returns the address of the read
register (in this instance the start address) by way of verification. If this does not match the one originally sent by the master, the master can then abort communication and repeat if necessary. If the address is correct, in the next stage of the procedure the master transmits the control byte optimized for maximum error recognition (0x59).

For its part the slave checks that the returned data is correct; if this is so, it then also transmits the control byte 0×59. In the event of error an inverted value of $0 \times A 6$ is sent. During the transmission of this control byte the slave also checks whether the signals at SI and SOC/SOB are synchronous. If this is not the case (due to a spike occurring at SCK, for example), the slave transmits the inverted control byte as soon as it has detected the error.

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE ${ }^{\circ}$ HaUS

Rev D1, Page 44/48
The master recognizes a correct transmission by the fact that the control byte was received without error.

Control Byte	Status of transmission
0×59 other values	correct transmission error during transmission

Table 16: Status of transmission indicated by Control Byte

NoB	Number of bytes	NoB	Number of bytes
$0 \times 0 \mathrm{~F}$	1	0×87	9
$0 \times 1 \mathrm{E}$	2	0×96	10
0x2D	3	$0 \times A 5$	11
0x3C	4	$0 x B 4$	12
$0 \times 4 \mathrm{~B}$	5	$0 x C 3$	13
$0 \times 5 \mathrm{~A}$	6	$0 x D 2$	14
0×69	7	$0 x E 1$	15
0×78	8	$0 x F 0$	16

Table 17: Setting the number of bytes to send/receive with NoB

SPI: Reading multiple data from an iC-JX

Figure 18: SPI: Reading several values of consecutive register addresses (auto-increment)

If data from several consecutive registers is to be read out (see Figure 18), the auto-increment function enables an abbreviated transmission protocol to be run using iC-JX. As in the reading of a single byte the controller sends the address, a NOP byte and the NoB byte (Number of bytes ≥ 2, see Tab. 17).

The addressed iC-JX repeats the start address and then transmits the consecutive register values and after one byte checks the data returned from the master
for errors. Once the required number of register values has been sent the slave transmits the address of the last register addressed (EndAdr), followed by the control byte 0x59 with error-free transmission or the inverted value 0xA6 with an error in transmission. During transmission of the control byte the synchronism of the signals at SI and SOC/SOB is again checked; if these are not synchronous, on recognition of this fact the slave then transmits the inverted control byte.

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH μ C INTERFACE C Hous

SPI: Writing single/multiple data to an iC-JX

Figure 19: SPI: Writing a single register value

Figure 20: SPI: Writing several register values

In the write process one or several registers can be written during a transmit cycle (see Fig. 19 and 20). To this end the master first sends the start address (addressing sequence see Fig. 16) and the numerical amount of data to be transmitted minus one (NoB, see Tab. 17). As in the read process this value is transmitted as two nibbles (non-inverted and inverted) to increase security. Data from consecutive addresses is then sent by the master. iC-JX returns the master data with a delay of one byte, allowing the master to constantly monitor whether an error has occurred during the addressing sequence or data transmission. If an error is detected, the master can prevent the faulty data being accepted by the slave registers by ending communication.

SPI: Error handling

In order to reduce processing time complex technology, such as CRC, etc., is not used for error handling. The transmitted addresses and data are instead returned by the recipient to the sender where they are compared to the original data transmitted.
Should the master detect an error, it can abort communication in such a way so as to prevent incorrect values being written to the slaves.
If an individually addressed slave determines that the data it has sent has been returned to it incorrectly or that the number of clock pulses is not a multiple of 8 bits, it can signal this error to the master by inverting the closing control byte.

iC-JX

16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

(C) Haus

Rev D1, Page 46/48

DESIGN REVIEW: Notes On Chip Functions

iC-JX X2 (and previous)	Description and application notes	
No.	Function, parameter/code	Leakage current beyond operating conditions (see Elec. Char. 019)
1	present and stable to avoid elevated leakage currents at pins IOx (x=1..16)	

Table 18: Notes on chip functions regarding iC-JX chip release X 2 and previous releases

iC-JX X3 and X3C		
No.	Function, parameter/code	Description and application notes
1	Leakage current beyond operating conditions (see Elec. Char. 019)	Leakage currents <200 $\mu \mathrm{A}$

Table 19: Notes on chip functions regarding iC-JX chip releases X3 and X3C

iC-JX
 16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE

Rev D1, Page 47/48

REVISION HISTORY

Rel.	Rel. Date ${ }^{*}$	Chapter	Modification	Page
C1	$2010-02-04$	\ldots		

Rel.	Rel. Date ${ }^{*}$	Chapter	Modification	Page
C2	$2016-08-12$	all chapters	Complete specification revised and corrected. Improved structure, order and presenta- tion of information.	
		REGISTER OVERVIEW	Binary representation A4...A0 corrected	15
		I/O INTERFACES	SPI: max. number of slaves corrected. SOB/SOC interrupt message method corrected. References to SPI broadcast deleted (broadcast is no longer possible).	39 ff.
		DESCRIPTION OF FUNCTIONS	Bit and address of undervoltage message VB1...4 corrected in description	
		DESCRIPTION OF FUNCTIONS	External resistor of 10 kת from RSET to ground is mandatory	38
		ABSOLUTE MAXIMUM RATINGS	Item \#G001 parameter description corrected	32
		ELECTRICAL CHARACTERISTICS	Item \#506 renamed \#745 New item \#746, \#747	5
		REVISION HISTORY	Document revision history introduced as new chapter.	10 ff.

Rel.	Rel. Date ${ }^{*}$	Chapter	Modification	Page
D1	2023-06-14	ELECTRICAL CHARACTERISTICS	Item 103 changed to 2.3 V (max) Item 104 changed to -0.50 A (max)	6
		OPERATING REQUIREMENTS: Parallel μ C Interface	Conditions: logic high level changed from 2.2 V to 2.0 V	12
		OPERATING REQUIREMENTS: Serial μ C Interface (SPI)	Conditions: logic high level changed from 2.2 V to 2.0 V Items 104, 105 changed to 165 ns (min) Items 107, 108 changed to 145 ns (max)	13

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.
Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.
The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.
No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.
iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

[^4]
iC-JX

16-FOLD 24 V HIGH-SIDE DRIVER WITH $\mu \mathrm{C}$ INTERFACE
(iC) Haus

Rev D1, Page 48/48

ORDERING INFORMATION

Type	Package	Order Designation
iC-JX	MQFP52	iC-JX MQFP52
Evaluation Board	-	iC-JX EVAL JX2D

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35-92 92-692
E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:
iC-Haus GmbH
Am Kuemmerling 18
D-55294 Bodenheim GERMANY

Tel.: +49 (0) 61 35-92 92-0
Fax: +49 (0) 61 35-92 92-192
Web: https://www.ichaus.com
E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners

[^0]: ${ }^{1}$ SECLK: see Control Word 3B on page 20
 a Filter times derived from system clock configured with f(SECLK ${ }^{1}$) @ 1.25 MHz

[^1]: ${ }^{1}$ SECLK: see Control Word 3B on page 20
 ${ }^{\text {a }}$ Filter times derived from system clock configured with $f\left(\right.$ SECLK $\left.^{1}\right) @ 1.25 \mathrm{MHz}$

[^2]: ${ }^{1}$ SECLK: see Control Word 3B on page 20
 ${ }^{\text {a }}$ Filter times derived from system clock configured with f(SECLK ${ }^{1}$) @ 1.25 MHz

[^3]: ${ }^{\text {a }}$ FACTOR $_{\text {ADC }}$ see P. 35

[^4]: * Release Date format: $Y Y Y Y-M M-D D$

