iC-LNB 18-BIT OPTICAL ENCODER
WITH SPI, SERIAL, AND PARALLEL INTERFACES
Rev D1, Page 1/45

## FEATURES

- System-on-chip design for excellent reliability
- Leading/trailing sampling of 10 binary tracks pitched at $400 \mu \mathrm{~m}$
- Analog sine/cosine scanning with enlarged photodiodes, signal conditioning and fast 8-bit vector-tracking interpolation
- Absolute singleturn resolution up to 18 bits
- FlexCount ${ }^{\circledR}$ provides programmable resolution for absolute and incremental data
- Incremental quadrature outputs with 1 to 65,536 CPR and programmable index signal
- LED illumination control using 50 mA high-side current source ( $\sin ^{2}+\cos ^{2}$ or sum control modes)
- Alarm indication for configuration or illumination error
- Permanent RAM monitoring by parity bits
- 3.3 V-compatible SPI and I/O ports for configuration and data
- Serial position readout in $1 \mu \mathrm{~s}$ cycles at 16 MHz clock frequency
- Parallel position output resolution up to 16 bits
- Operation at 4 V to 5.5 V within $-40^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$
- 30-pin optoBGA or 38-pin optoQFN package for SMT
- Illumination: iC-SN85 BLCC SN1C (850 nm encoder LED)
- Code discs: LNB1S 42-1024 (1024 PPR, $\varnothing 42 \mathrm{~mm} / 18 \mathrm{~mm}$ ), LNB4S 26-1024 (1024 PPR, ø 26 mm/9.6 mm)


## APPLICATIONS

- Programmable incremental encoders
- Optical position sensors
- Absolute rotary encoders
- Motor feedback systems
- Linear scales



## BLOCK DIAGRAM



# iC-LNB 18-bit optical ENCODER <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 2/45

## DESCRIPTION

The iC-LNB is an optoelectronic encoder IC for absolute linear and angle measuring systems. When combined with a linear scale or rotary encoder disc, the iC-LNB provides complete encoder functionality. Photodiodes, amplifiers, comparators, a complete signal conditioning unit, and multiple interfaces for position data output are monolithically integrated into the device.

The iC-LNB reads ten absolute tracks as well as an incremental track from the disc or scale. The incremental track provides sine and cosine signals which can be calibrated to compensate the offset and scale the amplitude of the photodiodes. These calibrated signals are used by the integrated vector-tracking interpolator to provide up to 8 bits of additional resolution and are also available on dedicated output pins. Combined with the 10 bits of absolute position, the interpolator provides resolution of up to 18 bits.

An integrated LED current control with a built-in driver allows direct connection of the illumination LED (iC-SN85 or other). The optical power received by the iC-LNB is kept constant by the current control, regardless of temperature and aging effects of the LED. The received power setpoint is programmable and an end-of-life alarm and error pin output indicate when the LED current control has exceeded its operating range.

The iC-LNB synchronizes the interpolator output and the absolute data to form a contiguous Gray-coded position data word. This position or angle data is output as incremental ABZ signals, absolute position via a scalable shift-register, and through the SPI interface. Alternatively, a 16-bit parallel position output is also available. FlexCount ${ }^{\circledR}$ allows the output position (incremental and absolute) resolution to be programmed to any value between 4 and $2^{18}$ steps (edges) per revolution.

After startup, the iC-LNB must be configured via the SPI interface. The SPI interface (as well as all the other digital I/O) operates at 3.3 V , allowing direct connection to 3.3 V microcontrollers.

## General notice on application-specific programming

 Parameters defined in the datasheet represent supplier's attentive tests and validations, but - by principle - do not imply any warranty or guarantee as to their accuracy, completeness or correctness under all application conditions. In particular, setup conditions, register settings and power-up have to be thoroughly validated by the user within his specific application environment and requirements (system responsibility).The chip's performance in application is impacted by system conditions like the quality of the optical target, the illumination, temperature and mechanical stress, sensor alignment and initial calibration.

# iC-LNB 18-bit optical encoder <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

## (10)Hous

## CONTENTS

PACKAGING INFORMATION4
PIN CONFIGURATION oBGA LNB2C
( $7.6 \mathrm{~mm} \times 7.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ ) ..... 4
PIN CONFIGURATIONoQFN38-7x5$(7.0 \mathrm{~mm} \times 5.0 \mathrm{~mm} \times 0.9 \mathrm{~mm})$(in qualification)5
PAD LAYOUT ..... 6
PACKAGE DIMENSIONS oQFN38-7x5 ..... 7
ABSOLUTE MAXIMUM RATINGS ..... 8
THERMAL DATA ..... 8
ELECTRICAL CHARACTERISTICS ..... 9
OPERATING REQUIREMENTS ..... 15
SPI Interface ..... 15
Shift Register ..... 16
CONFIGURATION PARAMETERS ..... 17
CONFIGURING THE IC-LNB ..... 18
Address Range ..... 18
RAM Monitoring (parity check) ..... 18
Chip Version ..... 18
Reset Values ..... 19
Programming Sequence ..... 19
SPI INTERFACE ..... 21
General Protocol Description ..... 21
Opcodes ..... 21
Bussing and Chaining Multiple iC-LNBs ..... 25
SIGNAL CONDITIONING ..... 26
Gain Range (GR) ..... 26
Sine Gain (GS) and Offsets (OSP and OSN) ..... 26
Cosine Gain (GC) and Offsets (OCP and OCN) ..... 27
LED Power Control ..... 27
INTERPOLATOR ..... 28
Interpolator Resolution ..... 28
Interpolator Hysteresis ..... 28
Interpolator Filter ..... 28
FLEXCOUNT ${ }^{\circledR}$ ..... 29
Enable/Disable ..... 29
Incremental FlexCount Output ..... 29
Absolute FlexCount Output ..... 29
Resolution ..... 29
Position offset ..... 30
Absolute Position Numeric Formats ..... 30
Changing FlexCount Resolution, Offset, or Direction ..... 30
OPERATING MODE ..... 32
Interface Mode ..... 32
Parallel Mode ..... 32
INCREMENTAL (ABZ) OUTPUTS ..... 33
ABZ Resolution ..... 33
Direction Reversal ..... 33
Incremental Output Inversion ..... 33
INCZ Position ..... 33
INCZ Width ..... 34
Tristate ..... 34
SHIFT REGISTER OUTPUT ..... 35
Output Data Length ..... 35
Output Data Format ..... 35
Idle Output ..... 35
Direction Reversal ..... 36
Shift Register Disable ..... 36
GRAY CODE OUTPUTS ..... 36
PARALLEL OUTPUT MODE ..... 37
ADJUSTMENTS ..... 38
Tilt Angle ..... 38
Radial Position ..... 38
LED POWER CONTROL ..... 39
ALARM OUTPUT ..... 39
OSCILLATOR ..... 40
TEST FUNCTIONS ..... 41
DESIGN REVIEW: Notes On Chip Functions ..... 42
REVISION HISTORY ..... 43

## PACKAGING INFORMATION

PIN CONFIGURATION oBGA LNB2C
( $7.6 \mathrm{~mm} \times 7.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ )


## PIN FUNCTIONS

## No. Name Function

A1 SCLK SPI Clock Input
A2 VDD $+3 \mathrm{~V} \ldots+5.5 \mathrm{~V}$ I/O Ports Supply Voltage
A3 GND I/O Ports Ground
A4 LED LED High-Side Current Source
A5 VDDA $+4 \mathrm{~V} \ldots+5.5 \mathrm{~V}$ Supply Voltage
A6 GNDA Ground
B1 CS SPI Chip Select Input
B2 MISO SPI Data Output
B3 MOSI SPI Data Input
B4 PCOS Analog Voltage Output PCOS
B5 NSIN Analog Voltage Output NSIN
B6 PSIN Analog Voltage Output PSIN

PIN FUNCTIONS
No. Name Function
C1 DIR Code Inversion Input / Parallel Output Bit 13
C2 TNS Test Input NSIN / Parallel Output Bit 14
C3 TNC Test Input NCOS / Parallel Output Bit 15
C4 TPS Test Input PSIN / Parallel Output Bit 1
C5 TPC Test Input PCOS /
Parallel Output Bit 0
C6 NCOS Analog Voltage Output NCOS
D1 DOUT Shift Register Data Output/
Parallel Output Bit 10
D2 DIN Shift Register Data Input / Parallel Output Bit 11
D3 NSL Shift Register Load Input (active low) / Parallel Output Bit 12
D4 INCB Incremental Output B / Parallel Output Bit 3
D5 INCA Incremental Output A / Parallel Output Bit 2
D6 ERR Error Message Output (active high)
E1 GB Gray Code Output B (MSB-1) / Parallel Output Bit 7
E2 GA Gray Code Output A (MSB) /
Parallel Output Bit 8
E3 CLK Shift Register Clock Input / Parallel Output Bit 9
E4 XJD Adjustment Signal / Parallel Output Bit 6
E5 POK Power OK Indication/ Parallel Output Bit 5
E6 INCZ Incremental Output Z / Parallel Output Bit 4

[^0]Rev D1, Page 5/45

## PIN CONFIGURATION <br> oQFN38-7x5 ( $7.0 \mathrm{~mm} \times 5.0 \mathrm{~mm} \times 0.9 \mathrm{~mm}$ ) (in qualification)



## PIN FUNCTIONS

No. Name Function
1 GNDA Ground
2-6 n.c. ${ }^{1}$ Not Connected
7 GND I/O Ports Ground
8 VDD $+3 \mathrm{~V} \ldots+5.5 \mathrm{~V}$ I/O Ports Supply Voltage
9 SCLK SPI Clock Input
10 MOSI SPI Data Input
11 MISO SPI Data Output
12 CS SPI Chip Select Input
13 TNC Test Input NCOS /
Parallel Output Bit 15
14 TNS Test Input NSIN /
Parallel Output Bit 14
15 DIR Code Inversion Input/
Parallel Output Bit 13

## PIN FUNCTIONS

No. Name Function
16 NSL Shift Register Load Input (active low) / Parallel Output Bit 12
17 DIN Shift Register Data Input / Parallel Output Bit 11
18 DOUT Shift Register Data Output / Parallel Output Bit 10
19 CLK Shift Register Clock Input / Parallel Output Bit 9
20 GB Gray Code Output B (MSB-1)/ Parallel Output Bit 7
21 GA Gray Code Output A (MSB) / Parallel Output Bit 8
22-24 n.c. ${ }^{1}$ Not Connected
25 POK Power OK Indication/ Parallel Output Bit 5
26 XJD Adjustment Signal / Parallel Output Bit 6
27 INCZ Incremental Output Z / Parallel Output Bit 4
28 INCB Incremental Output B / Parallel Output Bit 3
29 INCA Incremental Output A / Parallel Output Bit 2
30 ERR Error Message Output (active high)
31 TPS Test Input PSIN / Parallel Output Bit 1
32 TPC Test Input PCOS / Parallel Output Bit 0
33 NCOS Analog Voltage Output NCOS
34 PCOS Analog Voltage Output PCOS
35 NSIN Analog Voltage Output NSIN
36 PSIN Analog Voltage Output PSIN
37 LED LED High-Side Current Source
38 VDDA $+4 \mathrm{~V} \ldots+5.5 \mathrm{~V}$ Supply Voltage
$B P^{2} \quad$ Backside paddle

Rev D1, Page 6/45

## PAD LAYOUT



## PAD FUNCTIONS

No. Name Function
1 GND I/O Ports Ground
2 VDD $+3 \mathrm{~V} \ldots+5.5 \mathrm{~V}$ I/O Ports Supply Voltage
3 SCLK SPI Clock Input
4 MOSI SPI Data Input
5 MISO SPI Data Output
6 CS SPI Chip Select Input
7 TNC Test Input NCOS / Parallel Output Bit 15
8 TNS Test Input NSIN /
Parallel Output Bit 14
9 DIR Code Inversion Input /
Parallel Output Bit 13
10 NSL Shift Register Load Input (active low) /
Parallel Output Bit 12
11 DIN Shift Register Data Input/
Parallel Output Bit 11
12 DOUT Shift Register Data Output /
Parallel Output Bit 10
13 CLK Shift Register Clock Input / Parallel Output Bit 9
Gray Code Output A (MSB) / Parallel Output Bit 8
Gray Code Output B (MSB-1) /
Parallel Output Bit 7
Adjustment Signal / Parallel Output Bit 6
17 POK Power OK Indication/ Parallel Output Bit 5
18 INCZ Incremental Output Z / Parallel Output Bit 4
19 INCB Incremental Output B / Parallel Output Bit 3
20 INCA Incremental Output A / Parallel Output Bit 2
21 ERR Error Message Output (active high)
22 TPS Test Input PSIN /
Parallel Output Bit 1
23 TPC Test Input PCOS /
Parallel Output Bit 0
24 NCOS Analog Voltage Output NCOS
25 PCOS Analog Voltage Output PCOS
26 NSIN Analog Voltage Output NSIN
27 PSIN Analog Voltage Output PSIN
28 LED LED High-Side Current Source
29 VDDA +4V ... +5.5 V Supply Voltage
30 GNDA Ground

[^1]PACKAGE DIMENSIONS oQFN38-7x5


All dimensions given in mm. Tolerances of form and position according to JEDEC MO-220.
Positional tolerance of reticle pattern: $\pm 90 \mu \mathrm{~m} / \pm 1^{\circ}$ (with respect to center of backside pad). G4: radius of chip center (refer to the relevant encoder disc and code description).
Maximum molding excess $+20 \mu \mathrm{~m} /-75 \mu \mathrm{~m}$ versus surface of glass/reticle.

# iC-LNB 18-BIT OPTICAL ENCODER <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 8/45

## ABSOLUTE MAXIMUM RATINGS

These ratings do not imply permissible operating conditions; functional operation is not guaranteed.
Exceeding these ratings may damage the device.

| Item No. | Symbol | Parameter | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G001 | VDDA | Voltage at VDDA |  | -0.3 | 6 | V |
| G002 | VDD | Voltage at VDD |  | -0.3 | VDDA+0.3 | V |
| G003 | V(GND) | Voltage at GND |  | -0.3 | 0.3 | V |
| G004 | V() | Voltage at LED, PCOS, NCOS, PSIN, NSIN, TPC, TNC, TPS, TNS |  | -0.3 | VDDA+0.3 | V |
| G005 | V() | Voltage at INCA, INCB, INCZ, ERR, DIR, CLK, DOUT, DIN, NSL, CS, MOSI, MISO, SCK, POK, XJD, GA, GB |  | -0.3 | VDD+0.3 | V |
| G006 | I(VDDA) | Current in VDDA |  | -100 | 100 | mA |
| G007 | I(VDD) | Current in VDD |  | -50 | 50 | mA |
| G008 | I(GND) | Current in GND |  | -20 | 20 | mA |
| G009 | I(LED) | Current in LED |  | -100 | 20 | mA |
| G010 | I() | Current in INCA, INCB, INCZ, ERR, DIR, CLK, DOUT, DIN, NSL, CS, MOSI, MISO, SCK, POK, XJD, GA, GB, TPC, TNC, TPS, TNS |  | -35 | 35 | mA |
| G011 | I() | Current in PCOS, NCOS, PSIN, NSIN |  | -35 | 35 | mA |
| G012 | Vd() | ESD Susceptibility at all pins | HBM 100pF discharged through $1.5 \mathrm{k} \Omega$ |  | 2 | kV |
| G013 | Tj | Junction Temperature |  | -40 | 125 | ${ }^{\circ} \mathrm{C}$ |
| G014 | Ts | Chip Storage Temperature |  | -40 | 125 | ${ }^{\circ} \mathrm{C}$ |

## THERMAL DATA

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to 5.5 V , GNDA $=$ GND

| Item No. | Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T01 | Ta | Operating Ambient Temperature Range | packages oBGA LNB2C, oQFN38-7x5 | -40 |  | 110 | ${ }^{\circ} \mathrm{C}$ |
| T02 | Ts | Permissible Storage Temperature Range | packages oBGA LNB2C, oQFN38-7x5 | -40 |  | 110 | ${ }^{\circ} \mathrm{C}$ |
| T03 | Tpk | Soldering Peak Temperature | package oBGA LSH2C <br> tpk < 20 s, convection reflow <br> tpk < 20 s, vapor phase soldering <br> TOL (time on label) 8 h ; Please refer to customer information file No. 7 for details. |  |  | $\begin{aligned} & 245 \\ & 230 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ |
| T04 | Tpk | Soldering Peak Temperature | package oQFN38-7x5 <br> tpk < 20 s, convection reflow <br> tpk < 20 s, vapor phase soldering <br> MSL 5A (max. floor life 24 h at $30^{\circ} \mathrm{C}$ and 60\% RH); <br> Please refer to customer information file No. 7 for details. |  |  | $\begin{aligned} & 245 \\ & 230 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ |

# iC-LNB 18-BIT OPTICAL ENCODER <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 9/45

## ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GND}, \mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

| Item No. | Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Device |  |  |  |  |  |  |  |
| 001 | VDDA | Permissible Supply Voltage |  | 4 | 5 | 5.5 | V |
| 002 | VDD | Permissible I/O Supply Voltage | $\mathrm{VDD} \leq \mathrm{VDDA}$ | 3 | 5 | 5.5 | V |
| 003 | VDDA, VDD | Permissible Supply Voltage Ripple | at 150 kHz |  | 10 |  | mV |
| 004 | I(VDDA), I(VDD) | Supply Current in VDDA and VDD (sum) | without currents I(LED) and I(ERR), $\mathrm{Tj}=27^{\circ} \mathrm{C}$ |  | 25 | 40 | mA |
| 005 | Vcz()hi | Clamp Voltage hi at all Pins | l()$=4 \mathrm{~mA}$ |  |  | 11 | V |
| 006 | Vc() hi | Clamp Voltage hi at CLK, DIN, NSL, INCA, INCB, INCZ, ERR, DIR, MISO, DOUT, POK, XJD, GA, GB, TPS, TNS, TPC, TNC | $\begin{aligned} & \mathrm{Vc}() \mathrm{hi}=\mathrm{V}()-\mathrm{V}(\mathrm{VDD}), \\ & \mathrm{l}()=4 \mathrm{~mA} \end{aligned}$ | 0.3 |  | 1.2 | V |
| 007 | Vc() hi | Clamp Voltage hi at CS, MOSI, SCK | $\begin{aligned} & \mathrm{Vc}() \mathrm{hi}=\mathrm{V}()-\mathrm{V}(\mathrm{VDD}), \\ & \mathrm{I}()=4 \mathrm{~mA} \end{aligned}$ | 1.2 |  | 2.2 | V |
| 008 | Vc()lo | Clamp Voltage lo at all Pins | l()$=-4 \mathrm{~mA}$ | -1.2 |  | -0.3 | V |
| 009 | CVDDA, CVDD | Required Backup Capacitors at VDDA, VDD | placed near by pin, recommended low ESR |  | 1 |  | $\mu \mathrm{F}$ |
| Photodiodes |  |  |  |  |  |  |  |
| 101 | $\mathrm{Se}(\lambda)$ | Spectral Application Range | $\mathrm{Se}(\lambda)=0.25 \times \mathrm{S}(\lambda) \mathrm{max}$ | 400 |  | 950 | nm |
| 102 | $\mathrm{S}(\lambda) \mathrm{max}$ | Spectral Sensitivity | $\lambda=690 \mathrm{~nm}$ |  | 0.45 |  | A/W |
| 103 | $\mathrm{S}(\lambda)$ | Spectral Sensitivity | $\lambda=850 \mathrm{~nm}$ |  | 0.30 |  | A/W |
| 104 | Aph() | Radiant Sensitive Area DPSIN, DNSIN, DPCOS, DNCOS | $0.5 \mathrm{~mm} \times 0.25 \mathrm{~mm}$ |  | 0.125 |  | $\mathrm{mm}^{2}$ |
| 105 | Aph() | Radiant Sensitive Area Digital DA1VP, DA1VN, DA1NP, DA1NN DA2V ... DA10V, DA2N ... DA10N | $0.35 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ |  | 0.07 |  | $\mathrm{mm}^{2}$ |
| Photocurrent Amplifier |  |  |  |  |  |  |  |
| 201 | lph() | Permissible Photocurrent Operating Range |  | 0 |  | 200 | nA |
| 202 | Z() | Equivalent Transimpedance Gain | $Z()=\operatorname{Vout}() / \mathrm{Iph}()$ | 1.8 | 3.0 | 4.2 | $\mathrm{M} \Omega$ |
| 203 | $\Delta Z() p n$ | Transimpedance Gain Matching of an Amplifier Pair | P-channel versus corresponding N-channel | -0.2 |  | 0.2 | \% |
| 204 | fhc() | Upper Cut-off Frequency (-3 dB) | without LED current control | 120 | 300 | 500 | kHz |
| 205 | VR() | Ratio of Reference Voltage Digital Tracks (Vcomp) to Sum of Digital Track 1 | $V R()=\frac{V \text { comp }}{V A 1 V P+V A 1 V N+V A 1 N P+V A 1 N N}$ |  | 0.25 |  |  |
| 206 | Hys() | Hysteresis Digital Tracks |  | 5 | 15 | 25 | mV |
| 207 | GR() | Coarse Gain Range Analog Track | $\begin{aligned} & \mathrm{GR}=0 \times 00 \\ & \mathrm{GR}=0 \times 01 \\ & \mathrm{GR}=0 \times 02 \\ & \mathrm{GR}=0 \times 03 \end{aligned}$ | $\begin{gathered} 0.9 \\ 1.2 \\ 1.45 \\ 1.8 \end{gathered}$ | $\begin{gathered} 1 \\ 1.33 \\ 1.6 \\ 2 \end{gathered}$ | $\begin{gathered} 1.1 \\ 1.45 \\ 1.75 \\ 2.2 \end{gathered}$ |  |
| 208 | Vref | Reference Voltage of Photocurrent Amplifiers |  | 0.6 | 0.8 | 1 | V |
| 209 | $\Delta \mathrm{Vd}() \mathrm{sc}$ | Analog Track Dark Signal Voltage versus Vref | $\Delta \mathrm{Vd}() \mathrm{sc}=\mathrm{V}()-\mathrm{Vref}$ | -20 |  | 20 | mV |
| 210 | $\Delta \mathrm{Vd}() \mathrm{dig}$ | Digital Tracks Dark Signal Voltage versus Vref | $\Delta \mathrm{Vd}() \mathrm{dig}=\mathrm{V}()-\mathrm{Vref}$ | -35 |  | 35 | mV |

# iC-LNB 18-BIT OPTICAL ENCODER <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 10/45

## ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GND}, \mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

| Item No. | Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Conditioning Sin/Cos |  |  |  |  |  |  |  |
| 301 | Gmin | Adjustable Minimum Gain | GS, GC = 0x00 |  | 1 |  |  |
| 302 | Gmax | Adjustable Maximum Gain | GS, GC = 0x3F |  | 2 |  |  |
| 303 | $\Delta$ Gdiff | Differential Gain Calibration Accuracy | calibration range 6 bit | -0.5 |  | 0.5 | LSB |
| 304 | Omin | Offset Calibration Min | OSP, OSN, OCP, OCN = 0x00 | 45 | 47.5 | 50 | \%VDDA |
| 305 | Omax | Offset Calibration Max | OSP, OSN, OCP, OCN = 0x7F | 50 | 52.5 | 55 | \%VDDA |
| 306 | $\Delta$ Odiff | Differential Offset Calibration Accuracy | calibration range 7 bit | 0.01 | 0.04 | 0.06 | \%VDDA |
| Output Voltage PSIN, NSIN, PCOS, NCOS |  |  |  |  |  |  |  |
| 401 | Vdc() | DC-Voltage at all Outputs | Offset adjusted to VDDA/2 | 47 | 50 | 53 | \%VDDA |
| 402 | Vpk() | Permissible Signal Amplitude | DC level = VDDA/2 |  | 0.5 | 0.6 | V |
| 403 | I()mx | Permissible Output Current |  | -1 |  | 1 | mA |
| 404 | Ri() | Output Resistor | I()$=-1 \ldots 1 \mathrm{~mA}$ |  | 75 | 200 | $\Omega$ |
| LED Power Control LED, Error Message ERR |  |  |  |  |  |  |  |
| 501 | $\operatorname{lmx}()$ | Permissible LED Current at LED |  | -100 |  | 0 | mA |
| 502 | lop() | LED Current Control Range | ERRS (internal) $=0, \mathrm{~V}(\mathrm{LED})>\mathrm{Vs}(\mathrm{LED})$ | -50 |  | -1 | mA |
| 503 | Vs() | Saturation Voltage at LED | Vs()$=\mathrm{VDDA}-\mathrm{V}(\mathrm{LED}) ; \mathrm{l}()=-50 \mathrm{~mA}$ |  |  | 1 | V |
| 504 | $\operatorname{tr}()$ | Rise Time LED Current | I(LED): 0 \% $\rightarrow 90$ \% |  | 0.8 | 1.5 | ms |
| 505 | tset() | Settling Time of LED Control Loop | amplitude at PSIN, NSIN, PCOS and NCOS from $50 \%$ to $100 \%$ of setpoint |  | 300 |  | $\mu \mathrm{s}$ |
| 506 | Vs()hi | Saturation Voltage hi at ERR | $\begin{aligned} & \mathrm{Vs}() \mathrm{hi}=\mathrm{VDD}-\mathrm{V}(\mathrm{ERR}) ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| 507 | Isc()hi | Short-Circuit Current hi at ERR |  | -100 |  | -1.5 | mA |
| 508 | Vs()lo | Saturation Voltage lo at ERR | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| 509 | Isc()lo | Short-Circuit Current lo at ERR |  | 1.5 |  | 100 | mA |
| Interpolator |  |  |  |  |  |  |  |
| 701 | AAabs | Absolute Angular Position Accuracy | referenced to $\mathrm{Sin} / \mathrm{Cos}$ signal period, HYS $=0 \times 00$ <br> RESIPO = 11 (5 bit interpolation) <br> RESIPO = 10 (6 bit interpolation) <br> RESIPO = 01 (7 bit interpolation) <br> RESIPO = 00 (8 bit interpolation) |  | $\begin{aligned} & \pm 7.0 \\ & \pm 4.2 \\ & \pm 2.8 \\ & \pm 1.4 \end{aligned}$ |  | $\begin{aligned} & \text { DEG } \\ & \text { DEG } \\ & \text { DEG } \\ & \text { DEG } \end{aligned}$ |
| 702 | AArel | Relative Angular Error | ```referenced to output period T, see Figure 1 RESIPO = 11 (5 bit interpolation) RESIPO = 10 (6 bit interpolation) RESIPO = 01 (7 bit interpolation) RESIPO = 00 (8 bit interpolation)``` |  | 1 2 4 8 |  | \% $\%$ $\%$ \% |
| 703 | AAhys | Angular Hysteresis | referenced to output period T, see Figure 1 and Table 25, HYS = 0x00 <br> RESIPO = 11 ( 5 bit interpolation) <br> RESIPO = 10 ( 6 bit interpolation) <br> RESIPO = 01 (7 bit interpolation) <br> RESIPO = 00 (8 bit interpolation) |  | $\begin{aligned} & \pm 1.4 \\ & \pm 1.4 \\ & \pm 1.4 \\ & \pm 0.7 \end{aligned}$ |  | $\begin{aligned} & \text { DEG } \\ & \text { DEG } \\ & \text { DEG } \\ & \text { DEG } \end{aligned}$ |
| 704 | tw()hi | Duty Cycle | referenced to output period T, see Figure 1 |  | 50 |  | \% |
| 705 | $t_{A B}$ | Phase Shift A versus B | referenced to output period T, see Figure 1 |  | 25 |  | \% |
| 706 | $\mathrm{f}_{\text {max }}$ | Maximum Permissible Sin/Cos Frequency | $\begin{aligned} & \text { OSZC=10 } \\ & \text { RESIPO }=11 \text { ( } 5 \text { bit interpolation) } \\ & \text { RESIPO }=10 \text { ( } 6 \text { bit interpolation) } \\ & \text { RESIPO }=01 \text { ( } 7 \text { bit interpolation) } \\ & \text { RESIPO }=00 \text { ( } 8 \text { bit interpolation) } \end{aligned}$ |  |  | $\begin{gathered} 250 \\ 226 \\ 113 \\ 56.5 \end{gathered}$ | $\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$ |
| 707 | $\mathrm{tp}_{\mathrm{IPO}}$ | Propagation Delay Interpolator |  |  |  | 1/foipo |  |

iC-LNB 18-Bit optical Encoder
WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 11/45

## ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GND}, \mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

| Item No. | Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 708 | $\mathrm{tst}_{\text {IPO }}$ | Startup Time Interpolator | ```OSZC = 10, \(S E L A B S=1\), no illumination error, until POSOK = 1 RESIPO = 11 (5 bit interpolation): startup at 14500 rpm startup at standstill RESIPO = 10 ( 6 bit interpolation): startup at 13200 rpm startup at 12000 rpm startup at standstill RESIPO = 01 (7 bit interpolation): startup at 6600 rpm startup at 6000 rpm startup at standstill RESIPO = 00 ( 8 bit interpolation): startup at 3300 rpm startup at 3000 rpm startup at standstill``` |  |  | $\begin{gathered} 5 \\ 2 \\ \\ 600 \\ 30 \\ 4 \\ \\ 1100 \\ 55 \\ 6 \\ \\ 2000 \\ 100 \\ 10 \\ \hline \end{gathered}$ | $\mu \mathrm{s}$ <br> $\mu \mathrm{s}$ |
| FlexCount |  |  |  |  |  |  |  |
| 801 | AArel ${ }_{\text {Flex }}$ | Additional Relative Angular Error of FlexCount | referenced to output period T, see Figure 1 all resolutions <br> all binary resolutions <br> maximum resolution-4 <br> for RESIPO = 00 (8 bit interpolation): <br> RESSUB $=0 \times 01387$ (resolution 5000) <br> RESSUB $=0 \times 04 \mathrm{E} 1 \mathrm{~F}$ (resolution 20000 ) <br> RESSUB $=0 \times 09 \mathrm{C} 3 F$ (resolution 40000 ) <br> RESSUB $=0 \times 3 F F F B$ (resolution $2^{18}-4$ ) | 0 |  | $\begin{gathered} 25 \\ 0 \\ 25 \\ \\ \\ 0.48 \\ 1.92 \\ 3.85 \\ 25 \end{gathered}$ | $\begin{aligned} & \text { \% } \\ & \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$ |
| 802 | $\mathrm{tp}_{\text {Flex }}$ | Propagation Delay FlexCount | additional on top of $\mathrm{tp}_{\mathrm{lpo}}()$ |  |  | 4/f ${ }_{\text {oflex }}$ |  |
| 803 | $\mathrm{f}_{\text {max }}$ | Maximum Permissible Sin/Cos Frequency | $\begin{aligned} & \text { OSZC=10 } \\ & \text { RESIPO }=11 \text { ( } 5 \text { bit interpolation) } \\ & \text { RESIPO }=10 \text { ( } 6 \text { bit interpolation) } \\ & \text { RESIPO }=01 \text { ( } 7 \text { bit interpolation) }) \\ & \text { RESIPO }=00 \text { ( } 8 \text { bit interpolation) } \end{aligned}$ |  |  | $\begin{array}{r} 250 \\ 226 \\ 113 \\ 56.5 \end{array}$ | $\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$ |
| 804 | $\mathrm{tst}_{\text {Flex }}$ | Startup Time FlexCount | ```OSZC = 10, SELABS = 0, no illumination error, until POSOK=1, incl. tst \({ }_{\text {po }}\) RESIPO = 11 (5 bit interpolation): startup at 14500 rpm startup at standstill RESIPO = 10 ( 6 bit interpolation): startup at 13200 rpm startup at 12000 rpm startup at standstill RESIPO = 01 (7 bit interpolation): startup at 6600 rpm startup at 6000 rpm startup at standstill RESIPO = 00 ( 8 bit interpolation): startup at 3300 rpm startup at 3000 rpm startup at standstill``` |  |  | $\begin{gathered} 2.5 \\ 1.5 \\ \\ 35 \\ 15 \\ 2.5 \\ \\ 70 \\ 30 \\ 5 \\ \\ 140 \\ 60 \\ 10 \\ \hline \end{gathered}$ | ms <br> ms |
| Incremental Outputs INCA, INCB, INCZ |  |  |  |  |  |  |  |
| 901 | Vs() hi | Saturation Voltage hi | $\begin{aligned} & \mathrm{Vs}() \mathrm{hi}=\mathrm{VDD}-\mathrm{V}() ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| 902 | Isc()hi | Short-Circuit Current hi |  | -100 |  | -1.5 | mA |
| 903 | Vs()lo | Saturation Voltage lo | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| 904 | Isc()lo | Short-Circuit Current lo |  | 1.5 |  | 100 | mA |
| 905 | $\operatorname{tr}()$ | Rise Time | CL $=30 \mathrm{pF}, \mathrm{V}(): 10 \% \rightarrow 90 \% \mathrm{VDD}$ |  |  | 50 | ns |
| 906 | tf() | Fall Time | CL $=30 \mathrm{pF}, \mathrm{V}(): 90 \% \rightarrow 10 \% \mathrm{VDD}$ |  |  | 50 | ns |

# iC-LNB 18-BIT OPTICAL ENCODER WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 12/45

## ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GND}, \mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

| Item No. | Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPI Interface SCK, CS, MISO, MOSI |  |  |  |  |  |  |  |
| A01 | Vs()hi | Saturation Voltage hi at MISO | $\begin{aligned} & \mathrm{Vs}() \mathrm{hi}=\mathrm{VDD}-\mathrm{V}() ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| A02 | Isc()hi | Short-Circuit Current hi at MISO |  | -100 |  | -1.5 | mA |
| A03 | Vs()lo | Saturation Voltage lo at MISO | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| A04 | Isc() lo | Short-Circuit Current lo at MISO |  | 1.5 |  | 100 | mA |
| A05 | fin() | Permissible Clock Frequency at SCK |  |  |  | 10 | MHz |
| A06 | Vt()hi | Threshold Voltage hi at SCK, CS, MOSI |  |  |  | 2 | V |
| A07 | Vt ()lo | Threshold Voltage lo at SCK, CS, MOSI |  | 0.8 |  |  | V |
| A08 | $\mathrm{Vt}($ )hys | Hysteresis at SCK, CS, MOSI | Vt() $\mathrm{hys}=\mathrm{Vt}() \mathrm{hi}-\mathrm{Vt}() \mathrm{lo}$ | 40 | 100 |  | mV |
| A09 | lpu() | Pull-Up Current at SCK, MOSI | $\begin{aligned} & \mathrm{V}()=0 \ldots \mathrm{VDD}-1 \mathrm{~V} ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} -65 \\ -120 \end{gathered}$ | $\begin{aligned} & -25 \\ & -60 \end{aligned}$ | $\begin{gathered} -5 \\ -10 \end{gathered}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| A10 | Vpu() | Pull-Up Voltage at SCK, MOSI | $\begin{aligned} & \mathrm{Vpu}()=\mathrm{VDD}-\mathrm{V}() ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=-3 \mu \mathrm{~A} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=-5 \mu \mathrm{~A} \end{aligned}$ |  |  | 400 | mV |
| A11 | Ipd() | Pull-Down Current at CS | $\begin{aligned} & \mathrm{V}()=1 \mathrm{~V} \ldots \mathrm{VDD} ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ | $\begin{aligned} & 25 \\ & 60 \end{aligned}$ | $\begin{gathered} 80 \\ 150 \end{gathered}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| A12 | Vpd() | Pull-Down Voltage at CS | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=3 \mu \mathrm{~A} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=5 \mu \mathrm{~A} \end{aligned}$ |  |  | 400 | mV |
| A13 | $\mathrm{t}_{\mathrm{P} 2}$ | Propagation Delay: MISO tristate after Falling Edge CS | $C L=10 \mathrm{pF}$, see Figure 2 |  | 30 | 50 | ns |
| A14 | $\mathrm{t}_{\mathrm{P} 4}$ | Propagation Delay: MISO Stable after Clock Edge SCK | $\mathrm{CL}=10 \mathrm{pF}$, see Figure 2 |  | 30 | 60 | ns |
| Shift Register CLK, NSL, DOUT, DIN |  |  |  |  |  |  |  |
| B01 | $\mathrm{Vs}($ ) hi | Saturation Voltage hi at DOUT | $\begin{aligned} & \mathrm{Vs}() \mathrm{hi}=\mathrm{VDD}-\mathrm{V}() ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| B02 | Isc()hi | Short-Circuit Current hi at DOUT |  | -100 |  | -1.5 | mA |
| B03 | Vs()lo | Saturation Voltage lo at DOUT | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| B04 | Isc()lo | Short-Circuit Current lo at DOUT |  | 1.5 |  | 100 | mA |
| B05 | fin() | Permissible Clock Frequency at CLK |  |  |  | 16 | MHz |
| B06 | Vt() hi | Threshold Voltage hi at CLK, NSL, DIN |  |  |  | 2 | V |
| B07 | Vt()lo | Threshold Voltage lo at CLK, NSL, DIN |  | 0.8 |  |  | V |
| B08 | Vt()hys | Hysteresis at CLK, NSL, DIN | Vt()hys = Vt()hi-Vt()lo | 40 | 100 |  | mV |
| B09 | Ipu() | Pull-Up Current at CLK, NSL | $\begin{aligned} & \mathrm{V}()=0 \ldots \mathrm{VDD}-1 \mathrm{~V} ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} -65 \\ -120 \end{gathered}$ | $\begin{aligned} & -25 \\ & -60 \end{aligned}$ | $\begin{gathered} -5 \\ -10 \end{gathered}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |
| B10 | Vpu() | Pull-Up Voltage at CLK, NSL | $\begin{aligned} & \mathrm{Vpu}()=\mathrm{VDD}-\mathrm{V}() ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=-3 \mu \mathrm{~A} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=-5 \mu \mathrm{~A} \end{aligned}$ |  |  | 400 | mV |
| B11 | $\operatorname{lpd}()$ | Pull-Down Current at DIN | $\begin{aligned} & \mathrm{V}()=1 \mathrm{~V} \ldots \mathrm{VDD} ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ | $\begin{aligned} & 25 \\ & 60 \end{aligned}$ | $\begin{aligned} & 80 \\ & 150 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| B12 | Vpd() | Pull-Down Voltage at DIN | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=3 \mu \mathrm{~A} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=5 \mu \mathrm{~A} \end{aligned}$ |  |  | 400 | mV |

Rev D1, Page 13/45

## ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GND}, \mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

| Item No. | Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B13 | tp3() | Propagation Delay: DOUT Idle State after rising Edge NSL | $\mathrm{CL}=10 \mathrm{pF}$, see Figure 3 |  | 30 | 50 | ns |
| B14 | tp4() | Propagation Delay: DOUT stable after Clock Edge CLK | $\mathrm{CL}=10 \mathrm{pF}$, see Figure 3 |  | 30 | 60 | ns |
| Parallel Outputs Bit $0 \ldots 15$ (parameter EPG $=0 \times 1$ ) <br> Pins: TNC, TNS, DIR, NSL, DIN, DOUT, CLK, GA, GB, XJD, POK, INCZ, INCB, INCA, TPS, TPC |  |  |  |  |  |  |  |
| C01 | $\mathrm{Vs}($ ) hi | Saturation Voltage hi | $\begin{aligned} & \mathrm{Vs}() \mathrm{hi}=\mathrm{VDD}-\mathrm{V}() ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA}, \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| C02 | Isc()hi | Short-Circuit Current hi |  | -100 |  | -1.5 | mA |
| C03 | Vs()lo | Saturation Voltage lo | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA}, \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| C04 | Isc()lo | Short-Circuit Current lo |  | 1.5 |  | 100 | mA |
| C05 | $\operatorname{tr}()$ | Rise Time | CL $=30 \mathrm{pF}, \mathrm{V}(): 10 \% \rightarrow 90 \% \mathrm{VDD}$ |  |  | 50 | ns |
| C06 | tf() | Fall Time | CL $=30 \mathrm{pF}, \mathrm{V}(): 90 \% \rightarrow 10 \% \mathrm{VDD}$ |  |  | 50 | ns |
| Power-On-Reset POK |  |  |  |  |  |  |  |
| D01 | Vs() hi | Saturation Voltage hi | $\begin{aligned} & \mathrm{Vs}() \mathrm{hi}=\mathrm{VDD}-\mathrm{V}() ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA}, \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| D02 | Isc()hi | Short-Circuit Current hi |  | -100 |  | -1.5 | mA |
| D03 | Vs()lo | Saturation Voltage lo | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=1.5 \mathrm{~mA}, \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=2.5 \mathrm{~mA} \end{aligned}$ |  |  | 400 | mV |
| D04 | Isc()lo | Short-Circuit Current lo |  | 1.5 |  | 100 | mA |
| D05 | VDDAon | Turn-on Threshold VDDA, Power-on-release | increasing voltage at VDDA; POK: lo $\rightarrow$ hi | 3.6 | 3.8 | 4.0 | V |
| D06 | VDDAoff | Turn-off Threshold VDDA, Power-down-reset | decreasing voltage at VDDA; EPG $=0$, POK: hi $\rightarrow$ lo | 3.3 | 3.5 | 3.7 | V |
| D07 | VDDAhys | Hysteresis | VDDAhys = VDDAon - VDDAoff | 0.2 | 0.3 |  | V |
| Code Inversion Input DIR |  |  |  |  |  |  |  |
| E01 | Vt() hi | Threshold Voltage hi |  |  |  | 2 | V |
| E02 | Vt ()lo | Threshold Voltage lo |  | 0.8 |  |  | V |
| E03 | Vt()hys | Hysteresis | Vt( $)$ hys = Vt() hi - Vt()lo | 40 | 100 |  | mV |
| E04 | lpd() | Pull-Down Current | $\begin{aligned} & \mathrm{V}()=1 \mathrm{~V} \ldots \mathrm{VDD} ; \\ & \mathrm{VDD}=3 \ldots 4 \mathrm{~V} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ | $\begin{aligned} & 25 \\ & 60 \end{aligned}$ | $\begin{aligned} & 80 \\ & 150 \end{aligned}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |
| E05 | Vpd() | Pull-Down Voltage | $\begin{aligned} & \mathrm{VDD}=3 \ldots 4 \mathrm{~V}, \mathrm{I}()=3 \mu \mathrm{~A} \\ & \mathrm{VDD}=4 \ldots 5.5 \mathrm{~V}, \mathrm{I}()=5 \mu \mathrm{~A} \end{aligned}$ |  |  | 400 | mV |

## ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GND}, \mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

| Item No. | Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oscillator |  |  |  |  |  |  |  |
| F01 | $\mathrm{f}_{\text {oipo }}$ | Oscillator Frequency Interpolator | $\begin{aligned} & O S Z C=00 \\ & O S Z C=01 \\ & O S Z C=10 \\ & O S Z C=11 \end{aligned}$ | $\begin{aligned} & 13.0 \\ & 13.5 \\ & 14.5 \\ & 15.0 \end{aligned}$ | $\begin{aligned} & 16.5 \\ & 17.5 \\ & 19.0 \\ & 20.0 \end{aligned}$ | $\begin{aligned} & 20.0 \\ & 21.5 \\ & 23.0 \\ & 24.0 \end{aligned}$ | MHz <br> MHz <br> MHz <br> MHz |
| F02 | $\mathrm{f}_{\text {flex }}$ | Oscillator Frequency FlexCount | $\begin{aligned} & O S Z C=00 \\ & O S Z C=01 \\ & O S Z C=10 \\ & O S Z C=11 \end{aligned}$ | $\begin{aligned} & 14.0 \\ & 14.5 \\ & 15.5 \\ & 16.0 \end{aligned}$ | $\begin{aligned} & 17.0 \\ & 18.0 \\ & 19.5 \\ & 20.5 \end{aligned}$ | $\begin{aligned} & 20.0 \\ & 21.5 \\ & 23.0 \\ & 24.0 \end{aligned}$ | MHz <br> MHz <br> MHz <br> MHz |



Figure 1: Definition of relative angle error

Rev D1, Page 15/45

## OPERATING REQUIREMENTS: SPI Interface

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GND}, \mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

| Item No. | Symbol | Parameter | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1001 | $\mathrm{t}_{\mathrm{C} 1}$ | Permissible Clock Period | see Elec. Char. No.: A05 | 1/fin() |  |  |
| 1002 | ${ }^{\text {W }}$ 1 | Wait Time: between $\mathrm{CS} \mathrm{hi} \rightarrow$ lo and CS lo $\rightarrow$ hi |  | 500 |  | ns |
| 1003 | $\mathrm{t}_{\mathrm{S} 1}$ | Setup Time: <br> CS hi before SCK lo $\rightarrow$ hi |  | 50 |  | ns |
| 1004 | $\mathrm{t}_{\mathrm{P} 1}$ | Propagation Delay: <br> MISO stable after CS lo $\rightarrow$ hi | $\mathrm{CL}=10 \mathrm{pF}$ |  | 50 | ns |
| 1005 | $\mathrm{t}_{\mathrm{P} 2}$ | Propagation Delay: MISO tristate after CS hi $\rightarrow$ lo | $C L=10 \mathrm{pF}$ | Elec. Char. No.: A13 |  |  |
| 1006 | $\mathrm{t}_{\mathrm{H} 1}$ | Hold Time: CS hi after SCK lo $\rightarrow$ hi | valid for SPI mode 3 | 50 |  | ns |
| 1007 | $\mathrm{t}_{\mathrm{s} 2}$ | Setup Time: MOSI stable before SCK lo $\rightarrow$ hi |  | 50 |  | ns |
| 1008 | $\mathrm{t}_{\mathrm{H} 2}$ | Hold Time: <br> MOSI stable after SCK lo $\rightarrow$ hi |  | 50 |  | ns |
| 1009 | $\mathrm{t}_{\mathrm{P} 3}$ | Propagation Delay: MISO stable after MOSI change | mode: repeating MOSI on MISO, CL $=10 \mathrm{pF}$ |  | 50 | ns |
| 1010 | $\mathrm{t}_{\mathrm{P} 4}$ | Propagation Delay: MISO stable after clock edge SCK | mode: sending data MISO, CL $=10 \mathrm{pF}$ | Elec. Char. No.: A14 |  |  |
| 1011 | $\mathrm{t}_{\mathrm{w} 2}$ | Wait Time: SCK stable after CS hi $\rightarrow$ lo |  | 500 |  | ns |
| 1012 | $\mathrm{t}_{\mathrm{H}}$ | Hold Time: CS hi after SCK hi $\rightarrow$ lo | valid for SPI mode 0 | 50 |  | ns |
| 1013 | $t_{1} 1$ | Clock Sianal lo Level Duration |  | 50 |  | ns |



Figure 2: SPI interface timing

Rev D1, Page 16/45

## OPERATING REQUIREMENTS: Shift Register

Operating conditions: VDDA $=4 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VDD}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GNDA}=\mathrm{GND}, \mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

| Item No. | Symbol | Parameter | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1101 | $\mathrm{t}_{\mathrm{C} 1}$ | Permissible Clock Period | see Elec. Char. No.: B05 | 1/fin() |  |  |
| 1102 | $\mathrm{t}_{\mathrm{W} 1}$ | Wait Time Load Signal: NSL low after CLK lo $\rightarrow$ hi |  | 30 |  | ns |
| 1103 | $\mathrm{t}_{\mathrm{P} 1}$ | Propagation Delay: <br> DOUT (idle state) after NSL lo $\rightarrow$ hi | $\mathrm{CL}=10 \mathrm{pF}$ | Elec. Char. No.: B13 |  |  |
| 1104 | $\mathrm{t}_{\mathrm{P} 2}$ | Propagation Delay: <br> DOUT stable after CLK lo $\rightarrow$ hi | $\mathrm{CL}=10 \mathrm{pF}$ | Elec. Char. No.: B14 |  |  |
| 1105 | $\mathrm{t}_{\mathrm{S} 1}$ | Setup Time: DIN stable before CLK lo $\rightarrow$ hi |  | 30 |  | ns |
| 1106 | $\mathrm{t}_{\mathrm{H} 1}$ | Hold Time: DIN stable after CLK lo $\rightarrow$ hi |  | 30 |  | ns |
| 1107 | $\mathrm{t}_{\mathrm{W} 2}$ | Wait Time: <br> NSL high before request of position data (CLK hi $\rightarrow$ lo) |  | 100 |  | ns |
| 1108 | $\mathrm{t}_{\mathrm{L} 1}$ | Clock Signal lo Level Duration |  | 30 |  | ns |
| 1109 | $\mathrm{t}_{\mathrm{L} 2}$ | Clock Signal hi Level Duration |  | 30 |  | ns |



Figure 3: Shift register timing

Rev D1, Page 17/45

## CONFIGURATION PARAMETERS

| Operating Mode |  | RESSUB: | FlexCount resolution - 1 |
| :---: | :---: | :---: | :---: |
| EPG: Operating mode |  | STOPFLEX: | Stop/reset FlexCount |
|  |  | POSOK: | FlexCount position valid |
| GR: | Gain range | NOUTLO | Set FlexCount outputs low |
| GS: | Sine gain | INVA | Invert INCA output |
| OSP: | PSIN offset | INVB: | Invert INCB output |
| OSN: | NSIN offset | NV | Invert INCZ output |
| GC: | Cosine gain | ZPO | INCZ output position |
| OCP: | PCOS offset |  | CZ output pulse width |
| OCN: | NCOS offset | Shift Register Output ...................... Page 35 |  |
| LED Power Control ........................ Page 39 |  | NENSHIFT: | Shift register enable |
| LCMOD: | LED power control mode | NGRAY: | Shift register output data format |
| LCTYP: | LED power control type | RNF: | Shift register idle output |
| LCSET(5:0): | LED power control setpoint | SRC: | Output data length |
| Interpolator |  | DIR: | Shift register code inversion |
| RESIPO: | Interpolator resolution | Parallel Output Mode ....................... Page 37 |  |
| HYS: | Interpolator hysteresis | EPG: | Operating mode |
| ENIPO: | Interpolator enable |  | Operating mode |
| NENF: | Interpolator filter disable | Alarm Outpu | Page 39 |
| Incremental Output ........................ Page 33 |  | ERRS: | LED illumination error (internal) |
| INC: | Incremental output resolution | ERRP: | Parity error (internal) |
| TRIABZ: | Incremental output tristate (hi-z) | Oscillator | Page 40 |
|  |  | OSZC: | Oscillator adjustment |
| SELABS: | FlexCount enable/disable | Test Functions ............................ Page 41 |  |
|  | Select maximum or FlexCount resolution | TA: | Test modes |
|  | for absolute outputs | TMUX: | Test signal multiplexer |

iC-LNB 18-bit optical Encoder
WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 18/45
CONFIGURING THE iC-LNB

| REGISTER MAP (RAM) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Addr | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Signal calibration |  |  |  |  |  |  |  |  |
| 0x00 | P00 | NENSHIFT | GS(5:0) |  |  |  |  |  |
| 0x01 | P01 | LCMOD | GC(5:0) |  |  |  |  |  |
| 0x02 | P02 | OSP(6:0) |  |  |  |  |  |  |
| 0x03 | P03 | OSN(6:0) |  |  |  |  |  |  |
| 0x04 | P04 | OCP(6:0) |  |  |  |  |  |  |
| 0x05 | P05 | OCN(6:0) |  |  |  |  |  |  |
| LED Power Control |  |  |  |  |  |  |  |  |
| 0x06 | P06 | LCTYP | LCSET(5:0) |  |  |  |  |  |
| Output Configuration |  |  |  |  |  |  |  |  |
| 0x07 | P07 | NGRAY | DIR | EPG | OSZC(1:0) |  | GR(1:0) |  |
| 0x08 | P08 | INC(2:0) |  |  | RNF | SRC(2:0) |  |  |
| Test Functions |  |  |  |  |  |  |  |  |
| 0x09 | P09 | NENF | TA(1:0) |  | TMUX(3:0) |  |  |  |
| FlexCount |  |  |  |  |  |  |  |  |
| 0x0A | POA | 0 | 0 | 0 | 0 | HYS(2:0) |  |  |
| 0x0B | POB | INVA | INVB | INVZ | TRIABZ | SELABS | NENFLEX | 0 |
| 0x0C | POC | ZPOS(6:0) |  |  |  |  |  |  |
| 0x0D | POD | ZPOS(13:7) |  |  |  |  |  |  |
| 0x0E | P0E | RESIPO(1:0) |  | Z90 | ZPOS(17:14) |  |  |  |
| 0x0F | P0F | RESSUB(6:0) |  |  |  |  |  |  |
| 0x10 | P10 | RESSUB(13:7) |  |  |  |  |  |  |
| 0x11 | P11 | NOUTLO | STOPFLEX | ENIPO | RESSUB(17:14) |  |  |  |
| Status (read only) |  |  |  |  |  |  |  |  |
| 0x12 |  | CHIPVERSION(3:0) |  |  | 0 | ERRP | ERRS | POSOK |

Table 6: Register layout

## Address Range

The addresses available through the SPI interface range from $0 \times 00$ to $0 \times 12$. As only the lower five bits of the address byte are evaluated, addresses greater than $0 \times 1 \mathrm{~F}$ are mapped back to address range $0 \times 00-$ $0 \times 12$. It is recommended not to use addresses greater than $0 \times 12$ with the iC-LNB.

## RAM Monitoring (parity check)

The configuration registers in the internal RAM are constantly monitored by a parity check. Bit 7 of each address is the parity bit (P00-P11) which must be programmed to give an even number of ones in the byte. An odd number of ones in a byte indicates a parity error (ERRP) which sets the ERRP bit in the status register ( $0 \times 12$ bit 2 ) and activates the ERR output. See ALARM OUTPUT on page 39 for more information.

Chip Version

| Chip Version $\quad$ Addr. 0x12; bit 7:4 |  |  |
| :--- | :--- | :---: |
| Value | Description |  |
| 0 | V |  |
| 1 | U2 |  |
| $2 \ldots 15$ | Reserved |  |

Table 7: Chip Version

## Reset Values

After power-on, the registers are initialized as follows:

| Address | Reset Value | Description |
| :---: | :---: | :---: |
| 0x00-0x01 | 0xA0 | Gain (GS, GC) $=1.408$ Shift register (NENSHIFT) = enabled LED control behavior (LCMOD) $=0$ |
| 0x02-0x05 | 0xC0 | Offset (OSP, OSN, OCP, OCN) = $0.5004^{*}$ VDDA |
| 0x06 | 0x60 | $\begin{aligned} & \text { LED control mode }(\text { LCTYP })=\text { sum } \\ & \text { control, Set point }(\text { LCSET })=0.23 \mathrm{~V} \end{aligned}$ |
| 0x07 | 0x09 | ```Serial output format (NGRAY) \(=\) GRAY, Direction (DIR) = CW, EPG = interface mode, Oscillator \((O S Z C)=16 \mathrm{MHz}\), Gain range (GR) = 1.33``` |
| 0x08 | 0x18 | Interpolator factor $($ INC $)=x 2$, <br> Idle state DOUT (RNF) = '1', <br> Shift register (SRC) $=18$ bits |
| 0x09-0x0A | 0x00 | ```Test functions \(=0\), Hysteresis Interpolator (HYS) \(=1.4^{\circ}\)``` |
| 0x0B | 0x8E | ABZ outputs (INVA/B/Z) $=$ not inverted, ABZ outputs (TRIABZ) = tri-state, Shift register (SELABS) = max. resolution, FlexCount (NENFLEX) = disabled |
| 0x0C-0x10 | 0x00 | FlexCount parameters $=0$ |
| 0x11 | 0xA0 | FlexCount: <br> Outputs (NOUTLO) = low, <br> Reset (STOPFLEX) = stopped, <br> Interpolator (ENIPO) = disabled |

Table 8: Register Reset Values (RAM)

## Programming Sequence

After the iC-LNB has powered up (pin POK high), it must be configured through the SPI interface. A microcontroller with an integrated EEPROM and SPI master is usually used for this purpose. Depending on the required application functionality, the parameters must be written in a specific order (see Figure 4 on page 20).

If the iC-LNB is to be used without FlexCount, only the required interpolator resolution (RESIPO) and the incremental output resolution (INC) need to be set and the interpolator enabled (ENIPO = 1). Enable the INCA, INCB, and INCZ output drivers by resetting TRIABZ (0).

If the iC-LNB is to be used with FlexCount, the INCA, INCB, and INCZ outputs can be set low (NOUTLO = 0 and TRIABZ = 0) or to tristate (TRIABZ = 1) during configuration. After configuring all parameters, enable FlexCount (STOPFLEX = 0). After the current position has been found (POSOK=1), enable the INCA, INCB, and INCZ outputs (NOUTLO = 1 and TRIABZ = 0).

As shown in Figure 4, it is recommended to implement a timeout of 30 ms (up to 1000 RPM) when checking for POSOK. This avoids a potential infinite loop that could happen due to glitches or communication errors. If POSOK is still 0 after some number of timeouts (typically 5), a configuration error can be assumed.


Figure 4: Typical Configuration Sequence

# iC-LNB 18-bit optical Encoder <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 21/45

## SPI INTERFACE

## General Protocol Description

The SPI interface in the iC-LNB is implemented as an SPI slave and supports SPI modes 0 and 3, meaning that the idle state of SCLK can be 0 or 1 . Data is alwavs
is set to tristate if the iC-LNB is not selected by the master (CS=0). A rising edge on CS initiates an SPI transaction causing the MOSI signal to be fed through to MISO. Data is sent bvte bv bvte with the MSB (most


Figure 5: Typical SPI Transaction (Register Read)

Figure 5 shows a single Register Read transaction between the SPI master and a single iC-LNB (SPI slave). SPI data transactions occur as follows:

1. Master initiates a transaction with a rising edge on the chip select input (CS).
2. iC-LNB feeds MOSI through to MISO.
3. Master sends opcode and address bits on MOSI; this data is fed through to MISO.
4. iC-LNB transmits the data from the specified address to the master on MISO.
5. Master ends the transaction with a falling edge on CS.
6. iC-LNB switches its MISO output to tristate.

See Bussing and Chaining Multiple iC-LNBs on pag 25 for more information on multiple-device application

## Opcodes

Each SPI transaction begins with a 1-byte opcode (or eration code or command) sent by the SPI maste As shown in Table 9, the opcode determines whethe configuration (register) or sensor data (position) is a، cessed.

| SPI Opcodes |  |
| :--- | :--- |
| Code | Opcode |
| $0 x B 0$ | Activate |
| 0xA6 | Position Read |
| 0xF5 | Position Data (SDAD) Status |
| $0 \times 8 A$ | Register Read (continuous) |
| 0xCF | Register Write (continuous) |
| 0xAD | Register Status |

Table 9: SPI Opcodes

## Activate

The Activate opcode (0xB0) turns the register and sensor data channels in the iC-LNB on and off individually. This command causes the iC-LNB to reset its RA (register data channel) and PA (Sensor data channel) bits, turning both channels off, and resets the Fail, Valid, Busy, and Dismiss bits in the SPI Status byte (see Table 15). The RA and PA bits in the data byte following the opcode then activate one or both channels for subsequent transactions.

With only one iC-LNB slave (one register and one sensor data channel), the RA and PA bits are bits 1 and 0 respectively in the data byte following the Activate nommond no nhoian in Linime $a$


Figure 6: RA and PA (one slave)

If $R A=1$, the register data channel is activated and communication with iC-LNB registers is possible. If $P A=1$, the sensor data channel is activated and position (angle) information can be read. Both channels can be active at the same time. After power-on (POK= $1)$, the register data channel is enabled $(R A=1)$ and the sensor data channel is disabled $(P A=0)$.

Note that it is not possible for the SPI master to read back the state of the RA or PA bits to determine which data channels are active in the iC-LNB. It is only possible for it to turn both channels off and then activate each or both as required using the Activate command.

# iC-LNB 18-bit optical ENCODER <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 22/45

If RA=1, opcodes Register Read, Register Write, and Register Status operate normally, as explained below. If $R A=0$, these commands are not executed and, if attempted, set the Error bit in the SPI Status byte (Table 15).

Likewise, if PA = 1, the Position Read opcode operates normally, as explained below. If $\mathrm{PA}=0$, this command is not executed and, if attempted, sets the Error bit in the SPI Status byte (Table 15). All of these commands, however, are still passed through to MISO.

## Position Read

The Position Read command (0xA6) is used to read the absolute position data from the iC-LNB.


Figure 7: Position Read

As shown in Figure 7, the iC-LNB latches its position data on the first rising edge of SCLK when CS is high (REQ). The position data shift register then clocks out the latched position value on subsequent clock cycles (bytes SD1-SD3). Position data is available in binary or Gray code.

| NGRAY | Address 0x07; bit 6 |
| :--- | :--- |
| Value | Data Format |
| 0 | Gray Code |
| 1 | Binary |

Table 10: SPI Position Output Data Format

The sensor data channel must be activated $(P A=1)$ for proper operation of this command, otherwise the Error bit in the SPI Status byte is set. If invalid data is detected in the shift register, the Error bit in the SPI Status byte $($ Table 15) is set and SD1 $=$ SD2 $=$ SD3 $=0 \times 00$.

The length of the SPI shift register and the number of position bits used is determined by parameter SRC, as shown in Table 11.

| SRC Address 0x08; bits 2:0 |  |  |
| :--- | :--- | :--- |
| Value | SPI Shift Reg. Length | Number of Bits Used |
| 0 | 24 bits | 18 |
| 1 | 24 bits | 17 |
| 2 | 16 bits | 16 |
| 3 | 16 bits | 15 |
| 4 | 16 bits | 14 |
| 5 | 16 bits | 13 |
| 6 | 16 bits | 13 |
| 7 | 16 bits | 12 |

Table 11: SPI Output Data Length

If $S R C \geq 2$, only $S D 1$ and $S D 2$ are used. If $S R C<2$, SD1, SD2, and SD3 are used.

SPI position is shifted out MSB first and left-justified. If the SPI output data length is greater than the number of bits used ( $S R C \neq 2$ ), the unused LSBs are zero. For example, if $\mathrm{SRC}=1$, the shift register outputs the 17-bit position value followed by seven zeros. In this case, SD3 bits [6:0] are zero.

Note that SRC is also used to set the length of the position output shift register (Table 49). However, the position output shift register is not always the same length as the SPI shift register. Also, the position output shift register outputs right-justified position data whereas the SPI position data is left-justified.

If FlexCount is selected (SELABS $=0$ ), the number of valid position bits is determined by the FlexCount resolution, specified by parameter RESSUB. Also, if FlexCount is enabled and a non-binary resolution is used (RESSUB +1 is not an integer power of 2 ), the absolute position is a value between two non-zero numbers. See FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information on the absolute position numeric formats.

If FlexCount is not selected (SELABS = 1 ), the number of valid position bits is determined by the interpolator resolution (RESIPO), as shown in Table 12.

| RESIPO |  |  |
| :--- | :--- | :--- |
| Value | Iddress 0x0E; bits 6:5 |  |
| 0 | 8 bit | Valid Position Bits |
| 1 | 7 bit | 18 |
| 2 | 6 bit | 16 |
| 3 | 5 bit | 15 |

Table 12: Valid Position Bits

## Position Data (SDAD) Status

The status of position data can be checked with the SDAD Status command (0xF5). The command causes:

# iC-LNB 18-BIT OPTICAL ENC WITH SPI, SERIAL, AND PARAL 

1. All slaves activated via PACTIVE to switch SVALID and SFAIL registers between MOS MISO.
2. The next request for sensor data started wit| first rising edge at SCLK of the next SPI cor


Figure 8: SDAD status

The master can check the validity of the position and then read out this data with command $\mathbf{S}$ transmission. In iC-LNB, SVALID (SV) is ider to POSOK and SFAIL (SF) is the logical compleme POSOK.

| SVALID |  |
| :--- | :--- |
| Value | Description |
| 0 | Position data invalid (POSOK = 0) |
| 1 | Position data valid (POSOK = 1) |

Table 13: SVALID

| SFAIL |  |
| :--- | :--- |
| Value | Description |
| 0 | Position data request okay (POSOK = 1) |
| 1 | Position data request failed (POSOK = 0) |

Table 14: SFAIL

If only one slave is connected, the corresponding SVALID (SVO) and SFAIL (SF0) bits are placed at bit nocitionc 7 and 6 in the SV/AI in hute


Figure 9: SDAD status (Example with one and two slaves (daisy chain))

*) on the first rising edge at SCLK of the next SPI communication
Figure 10: Example sequence of the commands SDAD Status/SDAD-transmission

Figure 10 shows the interaction of the two commands SDAD Status and SDAD transmission. The position data communication starts with the command SDAD Status (1). The first SDAD Status requests new data. If SFAIL is not set, subsequent SDAD Status commands are used to check for the data to be ready to transmit (no new position data requests are issued).

If SFAIL is set, requesting new position data on the first rising edge of SCLK of the next SPI communication is enabled. If the position data is ready as indicated by SVALID, the SDAD-transmission (2) command can be executed to read out the position data. Following this, the command REGISTER status/data should be executed to detect an unsuccessful SPI communication.

# iC-LNB 18-bit optical ENCODER <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 24/45

## Register Read

The Register Read command (0x8A) reads data from


Figure 11: Register Read

The master transmits the read register opcode ( $0 \times 8 \mathrm{~A}$ ) followed by the starting address of the block of addresses to read (ADR) on MOSI. The iC-LNB immediately outputs the opcode and address on MISO followed by the data from the register at address ADR (DATA1). As long as CS stays active (high), data from the the next register (address ADR + 1) is then output (DATA2). Data from subsequent registers continues to be output as long as CS remains high.

The register data channel must be activated ( $R A=1$ ) for proper operation of this command, otherwise the Error bit in the SPI Status byte is set. If an error occurs during a register read (invalid address, invalid data, etc.), the Fail bit in the SPI Status byte is set, the address counter is no longer incremented, and the data returned is invalid. See Table 15 on page 24 for more information.

## Register Write

The Register Write command (0xCF) writes data to a


Figure 12: Write to REGISTER (cont.)

The master transmits the write register opcode (0xCF) followed by the starting address of the block of addresses to write (ADR), followed by the data to write to the register at address ADR (DATA1), the data to write to the address at ADR + 1 (DATA2), etc. on MOSI. The iC-LNB immediately outputs the MOSI bits on MISO.

Data continues to be written to subsequent registers as long as CS stays active (high).

The register data channel must be activated ( $R A=1$ ) for proper operation of this command, otherwise the Error bit in the SPI Status byte is set. If an error occurs during a register write (invalid address, invalid data, etc.), the Fail bit in the SPI Status byte is set, the address counter is no longer incremented, and the data is not written. See Table 15 on page 24 for more information.

Register Status
The Reaister Status command (0xAD) returns the SPI


Figure 13: Register Status

As shown in Figure 13, the SPI Status byte is returned immediately following the Register Status opcode (STATUS) and is followed by an undefined data byte (DATA).

Table 15 shows the SPI Status byte bits.

| STATUS |  |  |
| :--- | :--- | :--- |
| Bit | Name | Description |
| 7 | Error | Invalid opcode |
| $6: 4$ | - | Reserved |
| 3 | Dismiss | Illegal Address |
| 2 | Fail | Data request failed |
| 1 | Busy | Slave busy |
| 0 | Valid | Position data valid |

Table 15: SPI Status Byte

Status bits are updated with every register access, except Error, which indicates the status of the last command (opcode).

Rev D1, Page 25/45

## Bussing and Chaining Multiple iC-LNBs

Multiple iC-LNBs can be bussed or chained to a single SPI master. Figure 14 shows two iC-LNBs in a bussed configuration.


Figure 14: Bussing Multiple iC-LNBs

In this configuration, the SPI master communicates with each iC-LNB individually by activating the appropriate chip select (CS) output.

Figure 15 shows two iC-LNBs in a chained configuration.


Figure 15: Chaining Multiple iC-LNBs

In this configuration, the MISO output of each iC-LNB is chained to the MOSI input of the next device in the chain. The SPI master must activate the desired channel(s) in a specific slave device to communicate with it.

The required RA and PA bits for each slave are packed into the bytes following the Activate opcode, as shown in Figure 16.


Figure 16: Activate Command For Multiple Slaves

For example, Figure 17 shows MOSI and MISO for an Activate command for one and two chained slaves.


Figure 17: Activate Command For Two Slaves

Each slave outputs two zeros on MISO followed by the six most significant bits of MOSI and reads its RA and PA bits from bits 1 and 0 respectively of the RA/PA vector on MOSI. In this way, the RA/PA bits for the next slave in the chain are moved into bits 1 and 0 for the next slave.

The SPI master can determine the number of data channels in the chain by sending a 1 as bit 7 after the opcode in the Activate command. It then counts the number of zeros it receives on MISO before receiving the 1 back. The number of zeroes preceding the returned 1 is the number of data channels in the chain.
iC-LNB 18-BIT OPTICAL ENCODER

## SIGNAL CONDITIONING

The iC-LNB provides seven parameters for conditioning and calibrating the signals from the sine and cosine photodiodes. These allow the elimination of offsets and the calibration and equalization of gain between the two channels. The sin/cos signal path and the adjustment parameters are shown in Figure 18.


Figure 18: Sin/Cos Signal Path

Test modes (see TEST FUNCTIONS on page 41) allow observing many of the internal signals of the sin/cos signal path on the NSIN, PSIN, NCOS, and PCOS outputs to assist in calibration.

## Gain Range (GR)

The gain range for the analog $\sin / \cos$ signal path is set using parameter GR (0x07 bits 1:0).

| GR | Address 0x07; bits 1:0 |
| :--- | :--- |
| Value | Gain Factor |
| 0 | 1.0 |
| 1 | 1.33 |
| 2 | 1.6 |
| 3 | 2.0 |

Table 16: Gain Range for $\operatorname{Sin} /$ Cos Signal Path

A gain range of $1.33(\mathrm{GR}=1)$ is recommended for most applications.

## Sine Gain (GS) and Offsets (OSP and OSN)

To calibrate the sine channel gain and offsets, the LED power control must be set to sum control (LCTYP=1). In addition, the internal sine channel calibration signals must be made available on the analog outputs as shown in Figure 19 by setting TA $=0 \times 1$ and TMUX $=0 \times 0 \mathrm{D}$.


Figure 19: Gain and Offset Calibration

To start, set the sine and cosine amplitude (GS and GC) and offset parameters (OSP, OSN, OCP, and OSN) to their nominal values of $0 \times A 0$ and $0 \times C 0$ respectively (see Table 8). Adjust the optical power of the LED using parameter LCSET (0x06 bits 5:0) to set the sine channel amplitudes (VPS and VNS) as close to 500 mV as possible. Trim the sine channel amplitudes to 500 mV using parameter GS (0x00 bits 5:0).

| GS | Address $0 \times 00$; bits $5: 0$ |
| :--- | :--- |
| Value | Gain |
| $0 \times 00$ | 1.0 |
| $0 \times 01$ | 1.01 |
| $\ldots$ | $\frac{1+G S .0 .0053}{1-G S .0 .0053}$ |
| $0 \times 3 F$ | 2.0 |

Table 17: Sine Channel Gain

Next, calibrate the offset of VPS and VNS such that the zero level (average) of VPS is equal to VNS, using parameters OSP ( $0 x 02$ bits 6:0) and OSN ( $0 \times 03$ bits $6: 0)$, respectively. When properly adjusted, the difference between the average DC voltage of VPS and VNS should be zero.
iC-LNB 18-bit optical Encoder
WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 27/45

| OSP | Address 0x02; bits 6:0 |
| :--- | :--- |
| Value | Offset Value |
| $0 \times 00$ | $0.475 \cdot$ VDDA |
| $0 \times 01$ | $0.4754 \cdot$ VDDA |
| $\ldots$ | $\left(0.475+\frac{\text { OSPP.0.05 }}{127}\right) \cdot$ VDDA |
| $0 \times 7 \mathrm{~F}$ | $0.525 \cdot$ VDDA |

Table 18: Positive Sine (PSIN) Offset

| OSN | Address 0x03; bits 6:0 |
| :--- | :--- |
| Value | Offset Value |
| $0 \times 00$ | $0.475 \cdot$ VDDA |
| $0 \times 01$ | $0.4754 \cdot$ VDDA |
| $\ldots$ | $\left(0.475+\frac{\text { OSP.0.05 }}{127}\right) \cdot$ VDDA |
| $0 \times 7 F$ | $0.525 \cdot$ VDDA |

Table 19: Negative Sine (NSIN) Offset

## Cosine Gain (GC) and Offsets (OCP and OCN)

Calibration of the cosine channel gain and offsets is the same as for the sine channel, except that parameter TMUX must be set to $0 \times 0 \mathrm{E}$ instead of $0 \times 0 \mathrm{D}$. This makes the internal cosine channel calibration signals available on the analog outputs as shown in Figure 19.

First, trim the cosine channel amplitudes (VPC and VNC) to 500 mV using parameter GC (0x01 bits 5:0).

| GC | Address 0x01; bits 5:0 |
| :--- | :--- |
| Value | Gain |
| $0 \times 00$ | 1.0 |
| $0 \times 01$ | 1.01 |
| $\ldots$ | $\frac{1+G C \cdot 0.0053}{1-G C .0053}$ |
| $0 \times 3 F$ | 2.0 |

Table 20: Cosine Channel Gain

Next, calibrate the offset of VPC and VNC such that the zero level (average) of VPC is equal to VNC using
parameters OCP ( $0 \times 04$ bits 6:0) and/or OCN ( $0 \times 05$ bits $6: 0$ ), respectively. When properly adjusted, the difference between the average DC voltage of VPC and VNC should be zero.

| OCP | Address 0x04; bits 6:0 |
| :--- | :--- |
| Value | Offset Value |
| $0 \times 00$ | $0.475 \cdot$ VDDA |
| $0 \times 01$ | $0.4754 \cdot$ VDDA |
| $\ldots$ | $\left(0.475+\frac{\text { OSP } 0.05}{127}\right) \cdot$ VDDA |
| $0 \times 7 F$ | $0.525 \cdot$ VDDA |

Table 21: Positive Cosine (PCOS) Offset

| OCN | Address 0x05; bits 6:0 |
| :--- | :--- |
| Value | Offset Value |
| $0 \times 00$ | $0.475 \cdot$ VDDA |
| $0 \times 01$ | $0.4754 \cdot$ VDDA |
| $\ldots$ | $\left(0.475+\frac{\text { OSP.0.05 }}{127}\right) \cdot$ VDDA |
| $0 \times 7 F$ | $0.525 \cdot$ VDDA |

Table 22: Negative Cosine (NCOS) Offset

After all seven parameters (three gain and four offset) have been calibrated, return the iC-LNB to normal operation by turning off test mode ( $\mathrm{TA}=0 \times 0$ ).

## LED Power Control

After calibration, it is recommended to enable the square control function of the LED power control by setting LCTYP $=0$. This keeps the optical power received by the sine/cosine sensors constant regardless of changes in temperature and LED aging effects. After changing to square control, disable the deadband control by setting LCMOD $=0$ and then use parameter LCSET ( $0 \times 06$ bits 5:0) to adjust the sine/cosine amplitudes to 500 mV . After adjustment, it is recommended to enable the deadband control by setting LCMOD $=1$. See LED POWER CONTROL on page 39 for more information.

# iC-LNB 18-bit optical encoder <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 28/45

## INTERPOLATOR

## Interpolator Resolution

The resolution of the internal interpolator determines the resolution of the iC-LNB; it is set using parameter RESIPO ( $0 \times 0 E$ bits 6:5). The interpolator resolution also determines the maximum speed (sin/cos input frequency) as shown in Table 23.

| RESIPO | Address 0x0E; bits 6:5 |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Value | Interpolator <br> Resolution | iC-LNB <br> Resolution | Max. Speed |  |
| 00 | 8 bit | 18 bit | 3300 rpm |  |
| 01 | 7 bit | 17 bit | 6600 rpm |  |
| 10 | 6 bit | 16 bit | 13200 rpm |  |
| 11 | 5 bit | 15 bit | 14500 rpm |  |

Table 23: Interpolator Resolution

The maximum speeds shown in Table 23 are for a nominal interpolator oscillator frequency of 19.0 MHz ( $O S C Z=10$ ).

The interpolator must be enabled (ENIPO = 1) for normal operation of the iC-LNB, but must be disabled (ENIPO $=0$ ) when setting or changing its resolution.
After setting ENIPO=1, the interpolator needs the startup time tstipo to reach the current position. The startup time depends on the interpolator resolution and the speed at enabling, see spec. item 708.

| ENIPO | Address 0x11; bit 4 |
| :--- | :--- |
| Value | Description |
| 0 | Interpolator Disabled |
| 1 | Interpolator Enabled |

Table 24: Interpolator Enable

When disabled, the interpolator output is zero.

## Interpolator Hysteresis

The hysteresis window of the interpolator is set using parameter HYS.

| HYS | Hysteresis with RESIPO = |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Value | $00(8 \mathrm{bit})$ | $01(7 \mathrm{bit})$ | $10(6 \mathrm{bit})$ | $11(5 \mathrm{bit})$ |  |
|  | $+/-0.7^{\circ}$ | $+/-1.4^{\circ}$ | $+/-1.4^{\circ}$ | $+/-1.4^{\circ}$ |  |
| $0 \times 00$ | $+/-2.1^{\circ}$ | $+/-1.4^{\circ}$ | $+/-1.4^{\circ}$ | $+/-1.4^{\circ}$ |  |
| $0 \times 01$ | $+/-3.5^{\circ}$ | $+/-2.8^{\circ}$ | $+/-1.4^{\circ}$ | $+/-1.4^{\circ}$ |  |
| $0 \times 02$ | $+/-4.9^{\circ}$ | $+/-4.1^{\circ}$ | $+/-2.8^{\circ}$ | $+/-1.4^{\circ}$ |  |
| $0 \times 03$ | $+/-6.3^{\circ}$ | $+/-5.6^{\circ}$ | $+/-4.1^{\circ}$ | $+/-1.4^{\circ}$ |  |
| $0 \times 04$ | $+/-7.7^{\circ}$ | $+/-7.0^{\circ}$ | $+/-5.6^{\circ}$ | $+/-2.8^{\circ}$ |  |
| $0 \times 05$ | $+/-9.1^{\circ}$ | $+/-8.4^{\circ}$ | $+/-7.0^{\circ}$ | $+/-4.1^{\circ}$ |  |
| $0 \times 06$ | $+/-10.5^{\circ}$ | $+/-9.8^{\circ}$ | $+/-8.4^{\circ}$ | $+/-5.6^{\circ}$ |  |
| $0 \times 07$ | The recommended values are printed in black |  |  |  |  |
| Note |  |  |  |  |  |

Table 25: Hysteresis Depending On Interpolator Resolution

## Interpolator Filter

A low-pass filter is available to reduce noise on the interpolator inputs. This filter is enabled by parameter NENF.

| NENF | Address 0x07; bit 6 |
| :--- | :--- |
| Value | Description |
| 0 | Filter Enabled (recommended) |
| 1 | Filter Disabled |

Table 26: Interpolator Filter

It is recommended to always use the input filter; it has been designed so that it can be used across the entire speed range.

# iC-LNB 18-bit optical Encoder <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 29/45

## FLEXCOUNT ${ }^{\circledR}$

FlexCount ${ }^{\circledR}$ allows the resolution of the incremental, serial, and parallel outputs, as well as the SPI position to be programmed to any value less than the maximum resolution. FlexCount operates in real time and does not introduce any significant latency into the signal path.

## Enable/Disable

FlexCount is enabled or disabled using parameter NENFLEX.

| NENFLEX |  |
| :--- | :--- |
| Address 0x0B; bit 1 |  |
| Value | Description |
| 0 | FlexCount Enabled |
| 1 | FlexCount Disabled |

Table 27: FlexCount Disable

## Incremental FlexCount Output

To use FlexCount for the incremental (ABZ) outputs, parameter INC must be set to INC=0x07. See INCREMENTAL (ABZ) OUTPUTS on page 33 for more information.

## Absolute FlexCount Output

FlexCount can also be used for the absolute serial (shift register), parallel, and SPI outputs of the iC-LNB as determined by parameter SELABS.

| SELABS |  |
| :--- | :--- |
| Address 0x0B; bit 2 |  |
| Value | Absolute Output Resolution |
| 0 | FlexCount Resolution |
| 1 | Maximum Resolution |

Table 28: Absolute Output Resolution

FlexCount provides Gray code absolute outputs for all resolutions, however the position data output also allows binary absolute output.

If FlexCount is not used for the absolute outputs (SELABS = 1), the resolution of the absolute outputs is the maximum iC-LNB resolution, as determined by the selected interpolator resolution (RESIPO), as shown in Table 29.

Note that with SELABS $=1$ the status POSOK is set to 1 if the interpolator position is valid and with SELABS $=0$ the status POSOK is set to 1 if the FlexCount position is valid.

| RESIPO | Address 0x0E; bits 6:5 |
| :--- | :--- |
| Value | Maximum Resolution (Counts per Revolution) |
| 3 | 15 bits (32 768) |
| 2 | 16 bits (65 536) |
| 1 | 17 bits (131 072) |
| 0 | 18 bits (262 144) |

Table 29: Maximum Absolute Output Resolution

## Resolution

Parameter RESSUB determines the FlexCount resolution in incremental edges (ABZ outputs) or absolute counts (serial, parallel, and SPI outputs) per revolution.

| RESSUB | Addresses 0x0F, $0 \times 10$, and $0 \times 11$ bits 3:0 |  |
| :---: | :---: | :---: |
| Value | Resolution (edges or counts per revolution) |  |
| 0x3 | 4 |  |
| 0x7 | 8 |  |
| ... | ... |  |
| 0x07FFF | 32768 |  |
| 0x08003 | 32772 |  |
| $\ldots$ |  | (only with 6, 7 or 8 bit interpolation) |
| 0x0FFFF | 65536 |  |
| 0x10003 | 65540 |  |
| $\ldots$ |  | (only with 7 or 8 bit interpolation) |
| 0x1FFFF | 131072 |  |
| 0x20003 | 131076 |  |
| $\ldots$ | ... | (only with 8 bit interpolation) |
| 0x3FFFF | 262144 |  |

Table 30: FlexCount Resolution

As shown in Table 30, RESSUB is equal to the desired resolution minus 1. For example, if an output resolution of 10000 edges per revolution for the ABZ outputs is desired, set RESSUB = 0x0270F (10 000-1 = $9999=$ 0x0270F).

FlexCount resolution must be evenly divisible by four. In addition, maximum FlexCount resolution is limited by the selected interpolator resolution (RESIPO) as shown in Table 31.

| RESIPO | Address 0x0E; bits 6:5 |
| :--- | :--- |
| Value | Maximum RESSUB Value |
| 3 | $0 \times 07 F F F$ |
| 2 | $0 \times 0 F F F F$ |
| 1 | $0 \times 1$ FFFF |
| 0 | $0 \times 3 F F F F$ |

Table 31: Maximum FlexCount Resolution

# iC-LNB 18-bit optical ENCODER <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 30/45

RESSUB is an 18-bit value spread across three registers in the iC-LNB register map, as shown in Table 32.

| RESSUB | Registers |
| :--- | :--- |
| Bits | Address |
| $17: 14$ | $0 \times 11$ bits $3: 0$ |
| $13: 7$ | $0 \times 10$ bits $6: 0$ |
| $6: 0$ | $0 \times 0$ F bits $6: 0$ |

Table 32: RESSUB Addresses

## Position offset

iC-LNB's FlexCount allows a programmable position offset to be specified. This offset can be set as a binary value of the maximum internal resolution (which is dependent on interpolator resolution RESIPO) using parameter ZPOS (not in the selected FlexCount resolution). All values from 0 to 262,143 can be selected when using 8 bit interpolator resolution; with 7 bit resolution, the LSB must be 0; with 6 bit resolution, the last two LSBs must be 0 , and with 5 bit resolution, the last three LSBs must be 0 .

| ZPOS | Addresses 0x0C, 0x0D, 0x0E bits 3:0 |
| :--- | :--- |
| Value | Position offset (binary) |
| $0 \times 00000$ | 0 (any interpolation) |
| $0 \times 00001$ | 1 (only with 8 bit interpolation) |
| $0 \times 00002$ | 2 (only with 7 or 8 bit interpolation) |
| $0 \times 00003$ | 3 (only with 8 bit interpolation) |
| $0 \times 00004$ | 4 (only with 6, 7 or 8 bit interpolation) |
| $\ldots$ | $\ldots$ |
| $0 \times 00008$ | 8 (any interpolation) |
| $\ldots$ | $\ldots$ |
| $0 x 3 F F F F$ | 262143 (only with 8 bit interpolation) |

Table 33: FlexCount Position Offset

## Absolute Position Numeric Formats

With binary FlexCount resolutions (those where RESSUB +1 is an integer power of two), the Gray code absolute position is a number between 0 and RESSUB. Contiguous Gray code values differ by only one bit. Gray code 0 is coincident with the zero position of the encoder disc (falling edge of GA with DIR $=0$ ).

With non-binary resolutions (those where RESSUB + 1 is not an integer power of 2), however, the full n-bit Gray code cannot be used. In these cases, to preserve the Gray code characteristic of a one bit change between contiguous values, only RESSUB+1 number of bits from the center of the full n-bit Gray code are used. This means that the Gray code absolute position is a value between two non-zero numbers.

For example, with a binary FlexCount resolution of 128 (RESSUB $=0 \times 0007 F$ ), the Gray code absolute position is a value between $0(0 \mathrm{~g} 0000)$ and $127(0 \mathrm{~g} 0100$ '0000) inclusive. However, for the non-binary resolution of 100 (RESSUB $=0 \times 00063$ ), the Gray code absolute position is a value between 14 ( 0 g 0000 '1001) and 113 (0g0100'1001) inclusive.

The lowest Gray code value (14 in this case) is called the excess and is the value by which the Gray code value exceeds the actual absolute position. To determine the true absolute position (a value between 0 and 99 for a FlexCount resolution of 100 as in the example above), the excess must be subtracted from each converted Gray code value.

For example, if the absolute position returned by the iC-LNB is $0 g 0010$ '0111, the true absolute position is calculated as $58-14=44$ because $\left.0 g 0010^{\prime} 0111=0 b 0011 \prime 1010=0 \times 3 A=58\right)$.

With non-binary resolutions, the excess is calculated as

$$
\text { Excess }=\frac{2^{N}-(R E S S U B+1)}{2}
$$

In the above equation, N is the number of bits necessary to represent RESSUB. For example, with a FlexCount resolution of 100, $N=7$ since 7 bits are required to represent $0 \times 63$. For any FlexCount resolution, N is calculated as

$$
N=I N T\left(\log _{2}(R E S S U B)+1\right)
$$

With non-binary FlexCount resolutions, a Gray code value equal to the excess is coincident with the zero position of the encoder disc (falling edge of GA with DIR = 0).

## Changing FlexCount Resolution, Offset, or Direction

FlexCount must be stopped before the resolution (RESSUB), offset (ZPOS), or direction of rotation are changed (pin DIR or parameter DIR). This is done using parameter STOPFLEX, which stops FlexCount.

| STOPFLEX |  |
| :--- | :--- |
| Value | Description |
| 0 | FlexCount active (normal operation) |
| 1 | FlexCount Stopped |

Table 34: FlexCount Reset

# iC-LNB 18-Bit optical encoder <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 31/45

After changing the FlexCount resolution, offset, or direction, activate FlexCount again by setting STOPFLEX $=0$. This resets and re-enables FlexCount, causing the incremental (ABZ) and absolute (if SELABS $=0$ ) outputs to count to the current absolute position. During this period, the outputs are not valid and POSOK $=0$. POSOK is set to 1 when the position outputs are again valid.

| POSOK | Address 0x12; bit 0 |
| :--- | :--- |
| Value | Description |
| 0 | Position Invalid |
| 1 | Position Valid |

Table 35: Position Valid

As shown in Figure 4, it is recommended to implement a timeout when checking for POSOK. This timeout must be larger than the startup time tst $_{\text {Flex }}$ (see spec. item 804) of the FlexCount. This avoids a potential infinite loop that could happen due to glitches or communi-
cation errors. If POSOK is still 0 after some number of timeouts (typically 5), a configuration error can be assumed.

Additionally, the incremental (ABZ) outputs can be set low (NOUTLO $=0$ and TRIABZ $=0$ ) or the incremental outputs can be set to tristate (TRIABZ $=1$ ) to avoid invalid outputs when changing the FlexCount resolution, offset or direction. After the outputs are at the current absolute position (POSOK = 1), enable the FlexCount outputs (NOUTLO = 1 and TRIABZ = 0).

| NOUTLO | Address 0x11; bit 6 |
| :--- | :--- |
| Value | FlexCount Outputs |
| 0 | Low |
| 1 | Normal Operation |

Table 36: FlexCount Outputs

See INCREMENTAL OUTPUTS on page 33 for more information on TRIABZ.
iC-LNB 18-BIT OPTICAL ENCODER
WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 32/45

## OPERATING MODE

The iC-LNB has two operating modes which are selected using configuration bit EPG.

| EPG | Address 0x07, bit 4 |
| :--- | :--- |
| Value | Description |
| 0 | Interface Mode |
| 1 | Parallel Mode |

Table 37: Operating Mode

## Interface Mode

In interface mode, the shift register is used for absolute position output and the quadrature outputs (INCA and INCB) are used for incremental position output. If FlexCount is enabled (NENFLEX = 0), the incremental resolution is programmable and an index signal (INCZ) is also available. Also with FlexCount active, the absolute resolution can be the same as the incremental resolution or the maximum as determined by RESSUB. See FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information.

Regardless of the FlexCount resolution, two Gray code outputs GA and GB are available. These represent the MSB and MSB - 1 (respectively) of the iC-LNB absolute
position and are provided for use by an external turns (revolution) counter. See GRAY CODE OUTPUTS on page 36 for more information.

Also in interface mode, an output (XJD) is provided to aid in minimizing the mechanical tilt angle of the iC-LNB relative to the code disc. See ADJUSTMENT on page 38 for more information.

A power-on output at pin POK indicates whether or not the iC-LNB is ready.

## Parallel Mode

In parallel mode, the absolute position output is a 16-bit parallel data word in Gray code. In this mode, all I/O pins are configured as outputs and the shift register output, incremental outputs, Gray code outputs, XJD, and POK outputs cannot be used. See PARALLEL MODE on page 37 for more information.

The SPI interface can also be used for position data readout and is available in both operating modes. Table 38 shows the pin functions for each operating mode. Pins not shown in Table 38 are not affected by the choice of operating mode.

| Pad | Interface Mode | Parallel Mode |
| :--- | :--- | :--- |
| TNC | Test Input NCOS | Parallel Output Bit 15 |
| TNS | Test Input NSIN | Parallel Output Bit 14 |
| DIR | Code Inversion Input | Parallel Output Bit 13 |
| NSL | Shift Register Load Input | Parallel Output Bit 12 |
| DIN | Shift Register Data Input | Parallel Output Bit 11 |
| DOUT | Shift Register Data Output | Parallel Output Bit 10 |
| CLK | Shift Register Clock Input | Parallel Output Bit 9 |
| GA | Gray-code Output A (MSB) | Parallel Output Bit 8 |
| GB | Gray-code Output B (MSB-1) | Parallel Output Bit 7 |
| XJD | Adjustment Signal | Parallel Output Bit 6 |
| POK | Power OK Indication | Parallel Output Bit 5 |
| INCZ | Incremental Output Z | Parallel Output Bit 4 |
| INCB | Incremental Output B | Parallel Output Bit 3 |
| INCA | Incremental Output A | Parallel Output Bit 2 |
| TPS | Test Input PSIN | Parallel Output Bit 1 |
| TPC | Test Input PCOS | Parallel Output Bit 0 |

Table 38: Pin Functions According to Operating Mode

# iC-LNB 18-bit optical Encoder <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 33/45

## INCREMENTAL (ABZ) OUTPUTS

## ABZ Resolution

In interface mode (EPG = 0), the incremental outputs INCA and INCB can be set to use various interpolation factors or the FlexCount resolution. Selection is made using parameter INC.

| INC |  |
| :--- | :--- |
| Value | Resolution |
| $0 \times 00$ | Interpolation Factor X1 |
| $0 \times 01$ | Interpolation Factor X2 |
| $0 \times 02$ | Interpolation Factor X4 |
| $0 \times 03$ | Interpolation Factor X8 |
| $0 \times 04$ | Interpolation Factor X16 |
| $0 \times 05$ | iC-Haus digital test |
| $0 \times 06$ | iC-Haus test |
| $0 \times 07$ | FlexCount Resolution |

Table 39: Incremental Output Resolution

If INC $=0 \times 00-0 \times 04$, the resolution of the ABZ outputs is the selected interpolation factor times the resolution of the incremental track on the code disc. INC $=0 \times 05$ and $0 \times 06$ are used for special test modes as explained in TEST FUNCTIONS on page 41. If INC $=0 x 07$, the $A B Z$ resolution is the selected FlexCount resolution. See FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information.

Note that a valid Z pulse on output INCZ is only available when FlexCount resolution is used (INC $=0 \times 07$ ).

## Direction Reversal

If FlexCount is enabled (NENFLEX=0 and SELABS = 0), the rotation direction of the incremental outputs can be reversed using parameter DIR or the DIR input.

| DIR | Address 0x07; bit 5 |
| :--- | :--- |
| Value | Description |
| 0 | CW (Normal Rotation) |
| 1 | CCW (Reversed Rotation) |

Table 40: Direction Reversal

The DIR input and the DIR bit are XOR (exclusive OR) gated. This means that no direction reversal occurs if the DIR input is high and parameter DIR $=1$.

FlexCount must be reset after changing the direction of rotation. See FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information.

## Incremental Output Inversion

If FlexCount is used (INC $=0 \times 07$ ), the incremental (ABZ) outputs can be inverted as required using register bits INVA, INVB, and INVZ. If FlexCount is not used (INC $\neq$ $0 x 07$ ), these bits have no effect.

| INVA |  |
| :--- | :--- |
| Value | Iddress 0x0B; bit 6 |
| 0 | Normal |
| 1 | Inverted |

Table 41: INCA Output Inversion

| INVB |  |
| :--- | :--- |
| Value | Iddress 0x0B, bit 5 |
| 0 | Normal |
| 1 | Inverted |

Table 42: INCB Output Inversion

| INVZ |  |
| :--- | :--- |
| Value | Iddress 0x0B; bit 4 |
| 0 | Normal |
| 1 | Inverted |

Table 43: INCZ Output Inversion

Note that inverting INCA or INCB reverses the counting direction of the AB outputs. Inverting both INCA and INCB does not affect the $A B$ counting direction.

## INCZ Position

If FlexCount resolution is used (INC $=0 \times 07$ ), the position of the INCZ output (relative to zero absolute position) is programmable. The $Z$ position is determined by parameter ZPOS, as shown in Table 44.

| ZPOS | Addresses 0x0C, 0x0D, 0x0E bits 3:0 |
| :--- | :--- |
| Value | Z Position (Edges Relative to Absolute Zero) |
| $0 \times 00000$ | 0 (any interpolation) |
| $0 \times 00001$ | 1 (only with 8 bit interpolation) |
| $0 \times 00002$ | 2 (only with 7 or 8 bit interpolation) |
| $0 \times 00003$ | 3 (only with 8 bit interpolation) |
| $0 \times 00004$ | 4 (only with 6,7 or 8 bit interpolation) |
| $\ldots$ | $\ldots$ |
| $0 x 00008$ | 8 (any interpolation) |
| $\ldots$ | $\ldots$ |
| $0 x 3 F F F F$ | 262143 (only with 8 bit interpolation) |

Table 44: INCZ Position

Rev D1, Page 34/45

If $\mathrm{ZPOS}=0 \times 0000$, the zero position is coincident with the falling edge of GA (iC-LNB MSB) as shown in Figure 20).


Figure 20: Zero position for $\mathrm{ZPOS}=0 \times 0$

Acceptable ZPOS values are also affected by the interpolator resolution RESIPO, as shown in Table 45.

| RESIPO | Address $0 \times 0$ E; bits $6: 5$ |
| :--- | :--- |
| Value | ZPOS Value |
| 3 | Evenly divisible by 8 |
| 2 | Evenly divisible by 4 |
| 1 | Evenly divisible by 2 |
| 0 | any value |

Table 45: Allowed ZPOS Value

ZPOS is an 18-bit value spread across three registers in the iC-LNB register map, as shown in Table 46.

| ZPOS | Registers |
| :--- | :--- |
| Bits | Address |
| $17: 14$ | 0x0E bits 3:0 |
| $13: 7$ | 0x0D bits 6:0 |
| $6: 0$ | $0 x 0 \mathrm{C}$ bits $6: 0$ |

Table 46: ZPOS Addresses

## INCZ Width

If FlexCount resolution is used (INC $=0 \times 07$ ), the width of the INCZ output is also programmable. The $Z$ width is determined by parameter Z90, as shown in Table 47.

| Z90 | Address 0x0E; bit 4 |  |  |
| :--- | :--- | :--- | :---: |
| Value | Index Width (AB Cycle) | Coincident With |  |
| 0 | $180^{\circ}$ | A high |  |
| 1 | $90^{\circ}$ | A and B high |  |

Table 47: Z Pulse Width

The INCZ output coincidence shown in Table 47 is true if ZPOS $=0 \times 00000$ and $I N V A=I N V B=I N V Z=0$. Other ZPOS values cause the INCZ output to be coincident with other AB states. Depending on the value of ZPOS, it may be necessary to invert INCA, INCB, or both to achieve the desired coincidence.

## Tristate

The incremental outputs INCA, INCB, and INCZ can be put into a high-impedance state (tristate) using register bit TRIABZ.

| TRIABZ | Address 0xOB; bit 3 |
| :--- | :--- |
| Value | INCA, INCB, INCZ |
| 0 | Normal Operation |
| 1 | Tristate |

Table 48: Incremental Outputs Tristate

This can be used to eliminate invalid transitions on the $A B Z$ outputs when changing the FlexCount resolution or direction. After power-on TRIABZ = 1 .
iC-LNB 18-Bit optical Encoder
WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 35/45

## SHIFT REGISTER OUTPUT

In interface mode (EPG = 0), a shift register is used for absolute position output.

As shown in Figure 21, the current absolute position is latched into the shift register on the first falling edge on the shift register clock input (CLK) while the shift
register load input (NSL) is high. Following this, the absolute position is clocked out on the shift register output (DOUT) on each rising edge of CLK, regardless of the level of NSL. Position is output in Gray code or binary, depending on parameter NGRAY, MSB first.


Figure 21: Shift register output

External data can be read into the iC-LNB through the shift register input (DIN). This data is clocked out following the position data, as shown in Figure 21.

The shift register output (DOUT) returns to its idle state (as specified by parameter RNF) on the rising edge of NSL. This means that the falling edge of NSL can occur any time during position transmission and is not critical.
example, if $\mathrm{SRC}=4$, the shift register outputs the 14-bit position value followed by two zeros.

## Output Data Format

Parameter NGRAY is used to select whether the shift register absolute position output is in Gray code or binary as shown in Table 50.

## Output Data Length

The length of the shift register and the number of position bits used are selected using parameter SRC, as shown in Table 49.

| SRC | Address 0x08; bits 2:0 |  |
| :--- | :--- | :--- |
| Value | Shift Register Length | Number of Bits Used |
| 0 | 18 bits | 18 |
| 1 | 17 bits | 17 |
| 2 | 16 bits | 16 |
| 3 | 16 bits | 15 |
| 4 | 16 bits | 14 |
| 5 | 16 bits | 13 |
| 6 | 14 bits | 13 |
| 7 | 14 bits | 12 |

Table 49: Shift Register Output Data Length

Position is always shifted out MSB first and left-justified. If the output data length is greater than the number of bits used $(S R C \geq 3)$, the unused LSBs are zero. For


Table 50: Shift Register Output Data Format

If FlexCount is enabled (NENFLEX=0 and SELABS $=0$ ) and a non-binary resolution is used (RESSUB +1 is not an integer power of 2 ), the absolute position is a value between two non-zero numbers regardless of the setting of NGRAY. See FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information on the absolute position numeric formats.

## Idle Output

Parameter RNF is used to select the idle output of the shift register output (DOUT) as shown in Table 51.
iC-LNB 18-BIT OPTICAL ENCODER
WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 36/45

| RNF | Address 0x08; bit 3 |
| :--- | :--- |
| Value | Shift Register Output (DOUT) |
| 0 | Absolute Position MSB |
| 1 | High |

Table 51: Shift Register Idle Output

If the position data is invalid (POSOK=0), the output DOUT is set to low in idle state.

## Direction Reversal

If FlexCount is enabled (NENFLEX=0 and SELABS $=0$ ), the absolute position direction can be reversed using parameter DIR or the DIR input. Both of these accomplish direction reversal by inverting the MSB of the Gray code absolute position.

| DIR |  |
| :--- | :--- |
| Value | Description |
| 0 | CW (Normal Rotation) |
| 1 | CCW (Reversed Rotation) |

Table 52: Direction Reversal

The DIR input and the DIR bit are XOR (exclusive OR) gated. This means that no direction reversal occurs if the DIR input is high and parameter DIR $=1$. Direction reversal also works when binary output is selected ( $\mathrm{NGRAY}=1$ ) as the conversion from Gray code to binary occurs after the MSB inversion.

FlexCount must be reset after changing the direction of rotation. See $\mathrm{FLEXCOUNT}^{\circledR}$ on page 29 for more information.

## Shift Register Disable

The output shift register can be disabled using NENSHIFT.

| NEN- <br> SHIFT | Address $0 \times 00 ;$ bit 6 |
| :--- | :--- |
| Value | Description |
| 0 | Output shift register enabled |
| 1 | Output shift register disabled |

Table 53: Shift Register Disable

## GRAY CODE OUTPUTS

In interface mode (EPG $=0$ ), outputs $G A$ and $G B$ provide two $90^{\circ}$ shifted digital signals with 1 PPR each as shown in Figure 22. These signals can be used by an external revolution counter to implement multiturn capability.


Figure 22: Outputs GA and GB

GA and GB are independent of the FlexCount resolution (RESSUB) or the zero position (ZPOS), and always occur at the positions shown in Figure 22 relative to the code disc.

The DIR input or parameter DIR ( $0 \times 07$ bit 5 ) can be used to invert the GA signal to reverse the rotation direction of the GA and GB outputs.

| DIR | Address 0x07; bit 5 |
| :--- | :--- |
| Value | Description |
| 0 | CW (Normal Rotation) |
| 1 | CCW (Reversed Rotation) |

Table 54: Direction Reversal

The DIR input and the DIR bit are XOR (exclusive OR) gated. This means that no direction reversal occurs if the DIR input is high and parameter DIR $=1$.

If FlexCount is enabled (NENFLEX=0 and SELABS $=0$ ), it must be reset after changing the direction of rotation. See FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information.

# iC-LNB 18-bit optical Encoder <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES 

Rev D1, Page 37/45

## PARALLEL OUTPUT MODE

Parallel output mode is provided as an alternative to the serial shift register output, incremental outputs, and the Gray code outputs. Parallel output mode is selected by setting EPG=1.

| EPG | Address 0x07, bit 4 |
| :--- | :--- |
| Value | Description |
| 0 | Interface Mode |
| 1 | Parallel Output Mode |

Table 55: Operating Mode

In parallel output mode, the absolute position output is a 16-bit parallel data word in Gray code. In this mode, all I/O pins are configured as outputs and the shift register output, incremental outputs, Gray code outputs, XJD, and POK outputs cannot be used.

The 16-bit parallel output can be the 10 bits from the digital tracks and 6 bits from the interpolator or the top 16 FlexCount bits depending on parameter SELABS. See FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information on parameter SELABS and configuring FlexCount.

If FlexCount is enabled (NENFLEX=0 and SELABS $=0$ ) and a non-binary resolution is used (RESSUB +1 is not an integer power of 2 ), the absolute position is a value between two non-zero numbers. See

FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information on the absolute position numeric formats.

It is recommended to set the interpolator resolution to 6 bits (RESIPO $=0 \times 2$ ) when using parallel output mode to allow the maximum input frequency, unless additional resolution is required by the SPI interface. See INTERPOLATOR on page 28 for more information on RESIPO and input frequency.

The DIR input or parameter DIR (0x07 bit 5) can be used to invert the MSB to reverse the rotation direction of the parallel output.

| DIR | Address 0x07; bit 5 |
| :--- | :--- |
| Value | Description |
| 0 | CW (Normal Rotation) |
| 1 | CCW (Reversed Rotation) |

Table 56: Direction Reversal

The DIR input and the DIR bit are XOR (exclusive OR) gated. This means that no direction reversal occurs if the DIR input is high and parameter DIR $=1$.

If FlexCount is enabled (NENFLEX $=0$ and SELABS $=0$ ), it must be reset after changing the direction of rotation. See FLEXCOUNT ${ }^{\circledR}$ on page 29 for more information.
iC-LNB 18-Bit optical Encoder
WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 38/45

## ADJUSTMENTS

## Tilt Angle

In interface mode (EPG = 0), a special output (XJD) is available to aid in adjusting the iC-LNB to minimize its tilt angle relative to the code disc for maximum accuracy.

XJD is the XORed signal from tracks DA4V and DA10V (the differential signal of the leading track 4 and track 10 diodes). As shown in Figure 23, adjust the tilt angle of the iC-LNB relative to the code disc to minimize the spike width, t , at $0^{\circ}$ and $180^{\circ}$, as indicated by the edges of the GA output.


Figure 23: Using XJD to Minimize Tilt Angle

The maximum tilt angle that can be tolerated by the system is determined by the the diameter of the code disc and the chosen interpolator hysteresis (HYS), as shown in Table 57.

| HYS(2:0) | LNB1S | LNB4S |
| :--- | :--- | :--- |
| $0 \times 00$ | $1.8^{\circ}$ | $1.0^{\circ}$ |
| $0 \times 01$ | $1.75^{\circ}$ | $1.0^{\circ}$ |
| $0 \times 02$ | $1.7^{\circ}$ | $0.95^{\circ}$ |
| $0 \times 03$ | $1.7^{\circ}$ | $0.95^{\circ}$ |
| $0 \times 04$ | $1.65^{\circ}$ | $0.95^{\circ}$ |
| $\ldots$ | $\ldots$ | $\ldots$ |
| $0 \times 07$ | $1.6^{\circ}$ | $0.9^{\circ}$ |

Table 57: Maximum Tilt Angle (relative to chip center)

The scan ratio for the adjustment signal at XJD can be derived from the maximum tilt angle. For example, with the LNB1S 42-1024 at a tilt angle of $1.8^{\circ}$, photodiode DA4V is approximately $74 \mu \mathrm{~m}$ from its ideal position. With an average radius of 19.89 mm for track DA4, this results in an edge shift of $0.06 \%$. The edge shift for photodiode DA10V is approximately the same size, but in the opposite direction. Therefore, the scan ratio is $\mathrm{t} / \mathrm{T}=0.12 \%$ for the maximum tilt angle of $1.8^{\circ}$. Minimizing this value minimizes the tilt angle and maximizes system accuracy.

The actual spike width, $t$, depends on the rotation speed of the code disc. Under optimum conditions, the maximum spike Width is

$$
t[\mu s]=\frac{36000}{\text { Speed }[R P M]}
$$

The min. spike width is $0 \mu \mathrm{~s}$ and can be regarded as an ideal value, but is difficult to achieve in practice. Due to imperfect light levels, code disc tolerances, etc. adjustment to a spike width between $0 \mu$ s and half of this maximum value is recommended. Ideally, both spikes should be the same width. For example, at 300 RPM, the spike width, t , should be less than $60 \mu \mathrm{~s}\left(\frac{36000}{300} \cdot 0.5\right)$.

## Radial Position

The radial position of the iC-LNB relative to the code disc must be adjusted to center the tracks of the disc on the photodiodes of the iC-LNB. The error from ideal radial position must be less than $100 \mu \mathrm{~m}$ to avoid crosstalk between the absolute tracks, which can cause absolute position errors.

Radial position error also causes a phase error between the sine and cosine signals from the incremental track. This phase error can be measured and used to adjust the radial position of the iC-LNB relative to the code disc.

The phase error for a radial position error of $100 \mu \mathrm{~m}$ is shown in Table 58.

| Code Disc | Phase Error |
| :--- | :--- |
| LNB1S 42-1024 | $0.65^{\circ}$ |
| LNB4S 26-1024 | $1.6^{\circ}$ |

Table 58: Phase Error with $100 \mu \mathrm{~m}$ Radial Position Error

Adjust the radial position of the iC-LNB relative to the code disc to minimize the phase error between the sine and cosine signals.

Rev D1, Page 39/45

## LED POWER CONTROL

The optical power received by the sine/cosine sensors is kept constant by the integrated LED power control, regardless of changes in temperature and LED aging effects. The control mode is determined by parameter LCTYP, the options being sum control or square control. It is recommended to use square control during normal operation and sum control only for calibration.

| LCTYP | Address 0x06; bit 6 |
| :--- | :--- |
| Value | Control Type |
| 0 | Square Control $\left(\sin ^{2}+\cos ^{2}\right)$ |
| 1 | Sum Control (DC sum) |

Table 59: LED Power Control Type

The control setpoint is determined by paramet LCSET.

| LCSET | Address 0x06; bits 5:0 |  |
| :--- | :--- | :--- |
| Value | Square Control <br> LCTYP $=0$ | Sum Control <br> LCTYP $=1$ |
| $0 \times 00$ | 0.240 Vp | 0.140 V |
| $0 \times 01$ | 0.243 Vp | 0.142 V |
| $\ldots$ | $\frac{0.24 \mathrm{Vp}}{1-L C S E T \cdot 0.0125}$ | $\frac{0.14 \mathrm{~V}}{1-L C S E T \cdot 0.0125}$ |
| $0 \times 3 \mathrm{~F}$ | 1.1 Vp | 0.640 V |

Table 60: LED Power Control Setpoint

## ALARM OUTPUT

The iC-LNB has an alarm or error output (ERR) indicate errors. Under normal operation, ERR is lc indicating that no errors are present.

ERR is driven high when the LED power control ran is exceeded (ERRS $=1$ ) or a parity error is detected the RAM (ERRP = 1). ERRS and ERRP can also I read from the SPI status register, address $0 \times 12$ bits and 2 , respectively.

LCMOD determines whether or not deadband is used in the LED power control loop.

| LCMOD | Address $0 \times 01 ;$ bit 6 |
| :--- | :--- |
| Value | Control Mode (LCTYP = 0 or 1 ) |
| 0 | Continuous Control |
| 1 | Deadband Control (approximately $\pm 5 \%$ of setpoint) |

Table 61: LED Power Control Mode

In operation, if $\mathrm{LCMOD}=0$, the LED power control denroscac tho I FR nnisior ishonovar tho I FП vinltano ov-

## OSCILLATOR

The iC-LNB has two internal oscillators, one each for the interpolator and FlexCount. The frequency of these oscillators can be trimmed using parameter OSZC.

The oscillator frequency also affects the maximum speed (sin/cos input frequency). See INTERPOLATOR on page 28 and spec. item 706 for more information.

| OSZC | Address 0x07; bits $3: 2$ |  |
| :--- | :--- | :--- |
| Value | Typical Interpolator <br> Oscillator Frequency | Typical FlexCount <br> Oscillator Frequency |
| 0 | 16.5 MHz | 17.0 MHz |
| 1 | 17.5 MHz | 18.0 MHz |
| 2 | 19.0 MHz | 19.5 MHz |
| 3 | 20.0 MHz | 20.5 MHz |

Table 62: Oscillator Adjustment

It is recommended to use $O S Z C=2$, the startup value, unless application conditions require otherwise.
iC-LNB 18-BIT OPTICAL ENCODER
WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 41/45

## TEST FUNCTIONS

Test functions are provided in the iC-LNB to allow observation of internal analog signals for calibration and adjustment. These internal signals replace the analog sine and cosine outputs when $\mathrm{TA}=1$.

| TA | Address 0x09; bits $5: 4$ |
| :--- | :--- |
| Value | Output at PSIN, NSIN, PCOS, NCOS |
| 0 | Normal operation |
| 1 | Test Mode |
| 2 | iC-Haus Test |
| 3 | iC-Haus Test |

Table 63: Test Modes

In test mode (TA = 1), parameter TMUX determines which four internal signals are available on the analog sine and cosine outputs, as shown in Table 64.

| TMUX Address 0x09; bits 3:0 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Value | Pin PSIN | Pin NSIN | Pin PCOS | Pin NCOS |
| 0x00 | VPSI | VNSI | VPCI | VNCI |
| 0x01 | AVP1 | Vref | AVN1 | Vcomp |
| 0x02 | ANP1 | Vref | ANN1 | Vcomp |
| 0x03 | AN2 | Vref | AV2 | Vcomp |
| 0x04 | AN3 | Vref | AV3 | Vcomp |
| 0x05 | AN4 | Vref | AV4 | Vcomp |
| 0x06 | AN5 | Vref | AV5 | Vcomp |
| 0x07 | AN6 | Vref | AV6 | Vcomp |
| 0x08 | AN7 | Vref | AV7 | Vcomp |
| 0x09 | AN8 | Vref | AV8 | Vcomp |
| 0x0A | AN9 | Vref | AV9 | Vcomp |
| 0x0B | AN10 | Vref | AV10 | Vcomp |
| 0x0C | VREFPS | VREFNS | VREFPC | VREFNC |
| 0x0D | PSIN | NSIN | PCOS | SVDC |
| 0x0E | PCOS | NCOS | PSIN | CVDC |
| $\begin{aligned} & 0 \times 0 \mathrm{~F}, \\ & \mathrm{NENF}=1 \end{aligned}$ | IPQT | IPO | VREFO | BIASPO |
| $\begin{aligned} & \text { 0x0F, } \\ & \text { NENF }=0 \end{aligned}$ | PSF | NSF | PCF | NCF |

Table 64: Test Signal Multiplexer for Analog Signals

See SIGNAL CONDITIONING on page 26 for information on using the test signals for device calibration.

A digital test mode is provided to allow observation of internal digital signals for test and diagnosis. These internal signals replace the incremental outputs when INC $=0 \times 05$, as shown in Table 65.

| TMUX Address 0x09; bits 3:0 |  |  |  |
| :---: | :---: | :---: | :---: |
| Code | Pin INCA | Pin INCB | Pin INCZ |
| 0x00 | NENOS | NLOCK | $\mathrm{f}_{\mathrm{ipo}} / 4$ |
| $0 \times 01$ | V1 | N1 | 17 |
| $0 \times 02$ | V1 | N1 | 17 |
| $0 \times 03$ | V2 | N2 | 17 |
| $0 \times 04$ | V3 | N3 | 17 |
| $0 \times 05$ | V4 | N4 | 17 |
| 0x06 | V5 | N5 | 17 |
| 0x07 | V6 | N6 | 17 |
| $0 \times 08$ | V7 | N7 | 17 |
| $0 \times 09$ | V8 | N8 | 17 |
| 0x0A | V9 | N9 | 17 |
| 0x0B | V10 | N10 | 17 |
| 0x0C | 16 | 15 | 17 |
| 0x0D | 14 | 13 | 17 |
| 0x0E | IPO_A | IPO_B | IPO_Z |
| 0x0F | 12 | 11 | 17 |

Table 65: Test Signal Multiplexer for Digital Signals

## DESIGN REVIEW: Notes On Chip Functions

| iC-LNB V |  |  |
| :--- | :--- | :--- |
| No. | Function, Parameter/Code | Description and Application Notes |
|  |  | Refer to datasheet iC-LNB release B2, 2016. |

Table 66: Notes on chip functions regarding iC-LNB chip release $V$

| iC-LNB U2 |  |  |
| :--- | :--- | :--- |
| No. | Function, Parameter/Code | Description and Application Notes |
|  |  | None at time of release. |

Table 67: Notes on chip functions regarding iC-LNB chip release U2

Rev D1, Page 43/45

## REVISION HISTORY

| Rel. | Rel. Date ${ }^{*}$ | Chapter | Modification | Page |
| :--- | :--- | :--- | :--- | :--- |
| A1 | $13-06-21$ | Initial Release |  |  |


| Rel. | Rel. Date ${ }^{*}$ | Chapter | Modification | Page |
| :--- | :--- | :--- | :--- | :--- |
| B1 | $15-02-02$ | Electrical Characteristics | Item 102: changed name in "Max. Spectral Sensitivity" <br> Added new item 103: spectral sensitivity of 850nm <br> Item 703: angular hysteresis corrected <br> Item F01, F02: corrected typ. and add. min/max valid for iC-LNB V | 9,10 |
|  |  | OPERATING REQUIREMENTS: <br> SPI Interface | Updated Figure 2 SPI interface timing: definition of tcs <br> Item IO02: changed SCK hi $\rightarrow$ lo to SCK Io $\rightarrow$ hi | 14 |
|  | SPI Interface | Notice box on MISO regarding idle state of pin MISO <br> Description revised: Position data output format is always Gray code | 21,22 |  |
|  | Design Review | Added chip revision iC-LNB V <br> Chip revision X and X1 removed | 35 |  |


| Rel. | Rel. Date $^{*}$ | Chapter | Modification | Page |
| :--- | :--- | :--- | :--- | :--- |
| B2 | $2016-06-17$ | ELECTRICAL <br> CHARACTERISTICS | Item 707 added: propagation delay interpolator | 10 |
|  |  | FLEXCOUNT $^{\circledR}$ | Improved description and notes of table 30 <br> DESIGN REVIEW: Notes On Chip | Removed notes of pre-series revision W1 <br> Added note on chip revision V |
|  | Functions |  |  |  |


| Rel. | Rel. Date ${ }^{*}$ | Chapter | Modification | Page |
| :--- | :--- | :--- | :--- | :--- |
| C1 | $2018-03-27$ | all | Complete rework for chip revision iC-LNB U2 <br> (For chip revision iC-LNB V please refer to datasheet release B2, 2016) | all |


| Rel. | Rel. Date* | Chapter | Modification | Page |
| :---: | :---: | :---: | :---: | :---: |
| D1 | 2020-10-08 | DESCRIPTION | Note added | 2 |
|  |  | PACKAGING INFORMATION | Added information of IC top marking for LNB2C package | 4 |
|  |  | ABSOLUTE MAXIMUM RATINGS | Items G005, G010 changed | 8 |
|  |  | ELECTRICAL CHARACTERISTICS | Items 702, 703, 706, 707, 802, 803, A13, A14, B13, B14 changed Items 708, 804 added | 10 ff . |
|  |  | OPERATING REQUIREMENTS | Symbol names changed | 15 f. |
|  |  | CONFIGURATION PARAMETERS | Parameter SRC changed | 17 |
|  |  | CONFIGURING THE iC-LNB | Figure 4 changed | 20 |
|  |  | SPI INTERFACE | Figure 17 changed | 25 |
|  |  | SIGNAL CONDITIONING | Information on square control adjustment added | 27 |
|  |  | INTERPOLATOR | Table 23 and Table 25 changed Startup time added | 28 |
|  |  | FLEXCOUNT ${ }^{\text {® }}$ | Note on POSOK added POSOK timeout changed | 29 ff . |
|  |  | SHIFT REGISTER OUTPUT | Note on idle output added | 36 |
|  |  | ADJUSTMENTS | Note on ideal spike width added | 38 |
|  |  | OSCILLATOR | Table 62 values corrected | 40 |
|  |  | TEST FUNCTIONS | Table 64 changed: VTH $\rightarrow$ Vref, VREF $\rightarrow$ Vcomp | 41 |

[^2]
## iC-LNB 18-bit optical Encoder <br> WITH SPI, SERIAL, AND PARALLEL INTERFACES

Rev D1, Page 44/45
C-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.
Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.
The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.
No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.
iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

## ORDERING INFORMATION

| Type | Package | Options | Order Designation |
| :--- | :--- | :--- | :--- |
| iC-LNB | 30-pin optoBGA | standard reticle LNB1R <br> standard reticle LNB4R <br> customer specific reticle | iC-LNB oBGA LNB2C-1R <br> iC-LNB oBGA LNB2C-4R <br> iC-LNB oBGA LNB2C-xR |
| Standard <br> Code Discs | 38-pin optoQFN | standard reticle LNB1R <br> standard reticle LNB4R <br> customer specific reticle | iC-LNB oQFN38-7x5-1R <br> iC-LNB oQFN38-7x-4R <br> iC-LNB oQFN38-7x5-xR |
| Sin/Cos 1024 PPR, | LNB1S 42-1024 |  |  |
| 10 bit digital |  |  |  |
| OD/ID $\varnothing 42 / 18 \mathrm{~mm}$, glass |  |  |  |
| Sin/Cos 1024 PPR, | LNB4S 26-1024 |  |  |
| 10 bit digital |  |  |  |
| OD/ID $\varnothing 26 / 9.6 \mathrm{~mm}$, glass |  |  |  |

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35-92 92-692
E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

| iC-Haus GmbH | Tel.: +49 (0) 61 35-9292-0 |
| :--- | :--- |
| Am Kuemmerling 18 | Fax: $+49(0) 6135-9292-192$ |
| D-55294 Bodenheim | Web: http://www.ichaus.com |
| GERMANY | E-Mail: sales@ichaus.com |

Appointed local distributors: http://www.ichaus.com/sales_partners


[^0]:    IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes), <D-CODE> = date code (subject to changes);
    Grounding unused inputs ( $10 \mathrm{k} \Omega$ to GNDA) is recommended, especially for pins DIR, TPS, TNS, TPC, and TNC.
    For dimensional specifications, refer to package datasheet iC-LNB oBGA LNB2C, available separately.

[^1]:    Grounding unused inputs ( $10 \mathrm{k} \Omega$ to GNDA) is recommended, especially for pins DIR, TPS, TNS, TPC, and TNC.

[^2]:    * Release Date format: $Y Y Y Y-M M-D D$

