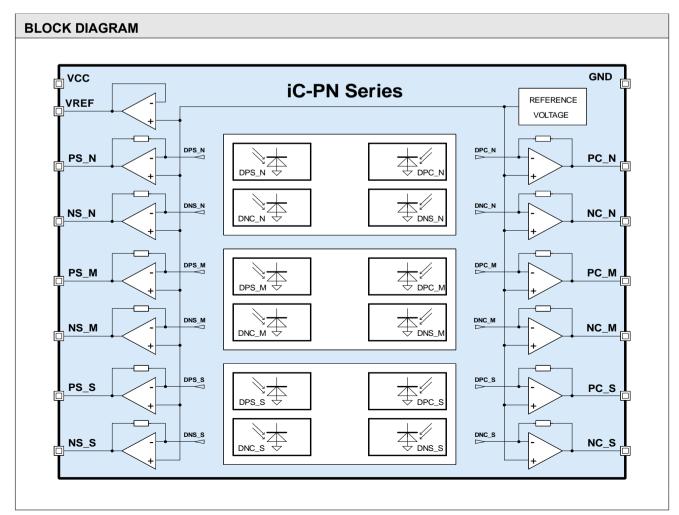
PHASED ARRAY NONIUS ENCODERS

Rev F2, Page 1/16


FEATURES

- ♦ Compact, high resolution absolute encoder ICs for up to 23 bit singleturn resolution (with nonius interpolation)
- ♦ For code discs of Ø 18 mm, Ø 26 mm, Ø 33 mm, Ø 39 mm
- ♦ Monolithic 3-channel HD Phased Array with excellent signal matching
- ♦ Moderate track pitch for reduced cross talk
- ♦ Ultra low dark currents for operation up to high temperature
- ♦ Low noise amplifiers with high transimpedance gain
- ♦ Enhanced EMI tolerance by low impedance differential, short-circuit-proof, analog sine/cosine outputs
- ♦ Low power consumption from single 4.1 to 5.5 V supply
- ♦ Operational temperature range of -40 °C to +125 °C
- Space saving optoQFN and optoBGA packages (RoHS compliant)
- ♦ Evaluation kits with LED and code disc available for sampling

APPLICATIONS

- ♦ Absolute position encoders
- ♦ AC servo feedback

PHASED ARRAY NONIUS ENCODERS

Rev F2, Page 2/16

DESCRIPTION

The iC-PN device series represents advanced optical encoder ICs featuring monolithically integrated photosensors arranged as an *HD Phased Array*, providing excellent signal fidelity at relaxed alignment tolerances.

Precise sine/cosine output signals allow for a high-resolution interpolation by subsequent devices: depending on the iC-PN version, a singleturn position can be resolved with up to 23 bit utilizing the 3-channel nonius interpolation of iC-MN.

The typical application of iC-PN devices are absolute position encoders for motion control and drive applications.

The iC-PN scans 3 incremental tracks by a phased-array of multiple photosensors each per track, and generates positive and negative going sine signals, as well as positive and negative going cosine signals. An excellent matching and common mode behavior of the differential signal paths is obtained by a paired

amplifier design. Due to a typical transimpedance gain of $1\,M\Omega$, the output signal level reaches a few hundred millivolts already at low light conditions.

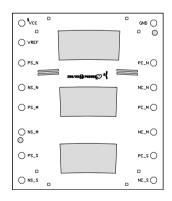
iC-PN18xx Series

Optical radius 6.9 mm, code disc Ø 18.0 mm; iC-PN1864: 64 CPR (63/64/56 CPR) iC-PN1856: 256 CPR (255/256/240 CPR)

iC-PN26xx Series

Optical radius 10.9 mm, code disc Ø 26.0 mm; iC-PN2656: 256 CPR (256/255/240 CPR) iC-PN2612: 512 CPR (511/512/496 CPR) iC-PN2624: 1024 CPR (1023/1024/992 CPR)

iC-PN33xx Series


Optical radius 14.5 mm, code disc Ø 33.0 mm; iC-PN3356: 256 CPR (256/255/240 CPR)

iC-PN39xx Series

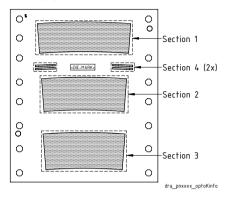
Optical radius 17.5 mm, code disc Ø 39.0 mm; iC-PN3924: 1024 CPR (1023/1024/992 CPR)

PACKAGING INFORMATION

PAD LAYOUT

PAD FUNCTIONS

No. Name Function


Chip layout example. Grey sections represent sensor layout areas; fill factors vary.

PHASED ARRAY NONIUS ENCODERS

Rev F2, Page 3/16

SENSOR LAYOUT

AOI CRITERIA

<die mark=""></die>	<section></section>	<area class=""/> 1
iC PN2656 Y1	1, 3	A25
	2	A16
	4	A40
iC PN1864		see iC-PN2656
iC PN1856		see iC-PN2656
iC PN3356		see iC-PN2656
iC PN2624 Y1, X	1, 3	A25
	2	A16
	4	A40
iC PN2612		see iC-PN2624
iC PN3312		see iC-PN2624
iC PN3324		see iC-PN2624
iC PN3924		see iC-PN2624

¹ Selection class for the optical inspection of detector areas. Refer to Optical Selection Criteria for further description.

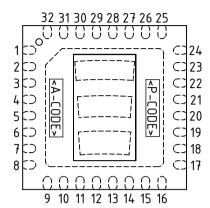
PIN CONFIGURATION oBGA LSH2C (6.2 mm x 5.2 mm)

PIN FUNCTIONS

No. Name Function

A2	VCC	+4.15.5 V Supply Voltage
A3	VREF	Reference Voltage Output
A4	GND	Ground
B1	PS_N	N-Track Sine +
B2	NS_N	N-Track Sine -
B3	NC_N	N-Track Cosine -
B4	PC_N	N-Track Cosine +
C1	PS_M	M-Track Sine +
C2	NS_M	M-Track Sine -
C3	NC_M	M-Track Cosine -
C4	PC_M	M-Track Cosine +
D1	PS_S	S-Track Sine +
D2	NS_S	S-Track Sine -
D3	NC_S	S-Track Cosine -
D4	PC_S	S-Track Cosine +
		Note: All signal outputs are analog volt-

age outputs.


For dimensional specifications refer to the relevant package data sheet, available separately.

PHASED ARRAY NONIUS ENCODERS

Rev F2, Page 4/16

PIN CONFIGURATION oQFN32-5x5 (5 mm x 5 mm)

PIN FUNCTIONS

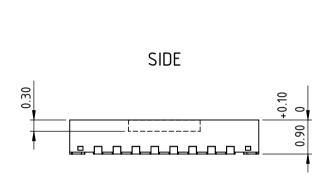
 BP^2

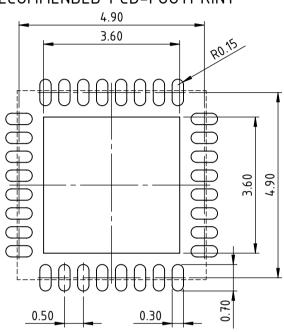
No.	Name	Function
1	VCC	+4.15.5 V Supply Voltage
2	VREF	Reference Voltage Output
3	PS_N	N-Track Sine +
4	NS_N	N-Track Sine -
5	PS_M	M-Track Sine +
6	NS_M	M-Track Sine -
7	PS_S	S-Track Sine +
8		S-Track Sine -
916	n.c.1	
17	NC_S	S-Track Cosine -
18	PC_S	S-Track Cosine +
19	NC_M	M-Track Cosine -
20	PC_M	M-Track Cosine +
21	NC_N	N-Track Cosine -
22	PC_N	N-Track Cosine +
23	n.c.1	
24	GND	Ground
2532	n.c. ¹	

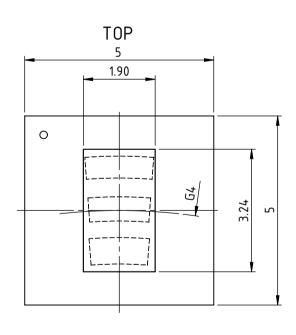
Backside paddle

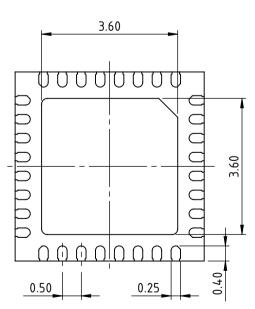
IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);

¹ Pin numbers marked n.c. are not connected.
2 Connecting the backside paddle is recommended by a single link to GND. A current flow across the paddle is not permissible.




Rev F2, Page 5/16


PACKAGE DIMENSIONS oQFN32-5x5

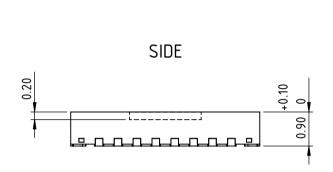

Drawing valid for chip release Y1, Y1H, Y2.

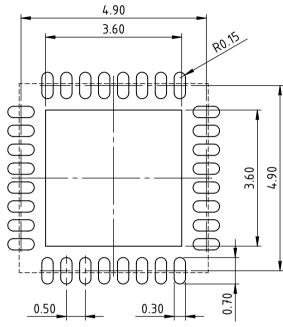
RECOMMENDED PCB-FOOTPRINT

BOTTOM

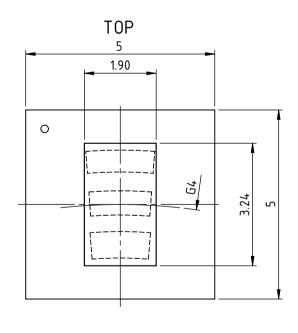
All dimensions given in mm. General Tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: ±70µm / ±1° (with respect to center of backside pad). G4: radius of chip center (refer to the relevant encoder disc and code description). Maximum molding excess +20µm / -75µm versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability.

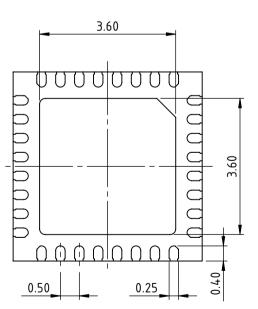
dra_oqfn32-5x5-4_pnxxxx_y_pack_1, 10:1




Rev F2, Page 6/16

PACKAGE DIMENSIONS oQFN32-5x5


Drawing valid for chip release X.


4.90 3.60

RECOMMENDED PCB-FOOTPRINT

BOTTOM

All dimensions given in mm. General Tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: $\pm 70 \mu \text{m}$ / $\pm 1^{\circ}$ (with respect to center of backside pad). G4: radius of chip center (refer to the relevant encoder disc and code description). Maximum molding excess +20μm / -75μm versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability. dra_oqfn32-5x5-4_pnxxxx_x_pack_1, 10:1

Rev F2, Page 7/16

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VCC	Voltage at VCC		-0.3	6	V
G002	I(VCC)	Current in VCC		-20	20	mA
G003	V()	Pin Voltage, all signal outputs		-0.3	VCC + 0.3	V
G004	I()	Pin Current, all signal outputs		-20	20	mA
G005	Vd()	ESD Susceptibility, all pins	HBM, 100 pF discharged through 1.5 kΩ		2	kV
G006	Tj	Junction Temperature		-40	150	°C
G007	Ts	Chip Storage Temperature		-40	150	°C

THERMAL DATA

Operating conditions: VCC = 4.1...5.5 V

Item	Symbol	Parameter	Conditions		·····		Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package oQFN32-5x5 package oBGA LSH2C	-40 -40		125 110	°C °C
T02	Ts	Storage Temperature Range	package oQFN32-5x5 package oBGA LSH2C	-40 -40		125 110	°C °C
T03	Трк	Soldering Peak Temperature	package oQFN32-5x5 tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering MSL 5A (max. floor life 24 h at 30 °C and 60 % RH); Refer to Handling and Soldering Conditions for details.			245 230	ိုင
T04	Tpk	Soldering Peak Temperature	package oBGA LSH2C tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering TOL (time on label) 8 h; Refer to Handling and Soldering Conditions for details.			245 230	°C

Rev F2, Page 8/16

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC = 4.1...5.5 V, Tj = -40..125 °C, unless otherwise stated

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device			Ш			ļ.
001	VCC	Permissible VCC Supply Voltage		4.1		5.5	V
002	I(VCC)	VCC Supply Current	no load, Vout() < Vout()mx		9.5	15	mA
003	Vc()hi	Clamp-Voltage hi at all pins	Vc()hi = V() - VCC; I() = 4 mA	0.6		2.0	V
004	Vc()lo	Clamp-Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
Photo	sensors	1					
101	λ ar	Spectral Application Range	$Se(\lambda ar) = 0.25 \times S(\lambda pk)$	400		950	nm
102	$S(\lambda)$	Spectral Sensitivity	λ_{LED} = 460 nm λ_{LED} = 740 nm λ_{LED} = 850 nm		0.25 0.5 0.35		A/W A/W A/W
103	λ pk	Peak Sensitivity Wavelength			680		nm
Photo	current Am	plifiers			,		I
201	lph()	Permissible Photocurrent Operating Range		0		1120	nA
202	η()r	Photo Sensitivity (light-to-voltage conversion ratio)	λ_{LED} = 740 nm		0.3		V/µW
203	Z()	Equivalent Transimpedance Gain	Z = Vout() / lph()	0.7	1.0	1.4	ΜΩ
204	TCz	Temperature Coefficient of Transimpedance Gain			-0.12		%/°C
205	ΔZ()pn	Transimpedance Gain Matching	P channel vs. corresponding N channel	-0.2		0.2	%
206	△Vout()pn	Signal Matching	no illumination; any output vs. any output P. output vs. corresponding N. output	-35 -2.5		35 2.5	mV mV
207	fc()hi	Cut-off Frequency (-3 dB)			400		kHz
208	VNoise()	RMS Output Noise	illuminated to 500 mV signal level above dark level, 500 kHz band width		0.5		mV
Signa	l Outputs						,
301	Vout()mx	Permissible Max. Output Voltage	refer to Figure 1	2.0			V
302	lout()mx	Permissible Max. Load Current		-100		250	μA
303	Vout()d	Dark Signal Level	no illumination, $I() \le 50 \mu\text{A}$	575	770	1000	mV
304	lsc()hi	Short-Circuit Current hi	load current to ground	100	420	1300	μΑ
305	lsc()lo	Short-Circuit Current lo	load current to IC	250	480	700	μA
306	Ri()	Internal Output Resistance	f= 1 kHz	70	110	180	Ω
307	ton()	Power-On Settling Time	$VCC = 0 V \rightarrow 5 V$			100	μs
Refere	ence Voltage						
401	VREF	Reference Voltage	I(VREF) = -100+300 μA	575	770	1000	mV
402	dVout()	Load Balancing	I(VREF) = -100+300 μA	-10		+10	mV
403	lsc()hi	Short-Circuit Current hi	load current to ground	200	420	2000	μA
404	lsc()lo	Short-Circuit Current lo	load current to IC	0.5	4.5	10	mA
	e Specific: i						
	Aph()	Radiant Sensitive Area	chip release Y chip release X		0.065 0.034		mm ² mm ²
V102	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 740 nm, Vout() not saturated; chip release Y		12		mW/ cm ²
			chip release X		23		mW/ cm ²

Rev F2, Page 9/16

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC = 4.1...5.5 V, Tj = -40..125 °C, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Device	Specific:	iC-PN1856		Ш		1	u.
V201	Aph()	Radiant Sensitive Area	chip release Y chip release X		0.038 0.050		mm² mm²
V202	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 740 nm, Vout() not saturated; chip release Y		20		mW/ cm ²
			chip release X		15		mW/ cm ²
Device	e Specific:	iC-PN2656			1		
V301	Aph()	Radiant Sensitive Area	chip release Z chip release Y1, Y1H		0.11 0.12		mm² mm²
V302	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 740 nm, Vout() not saturated; chip release Z		6.4		mW/ cm ²
			chip release Y1, Y1H		4.6		mW/ cm ²
Device	Specific:	iC-PN2612			1		u
V401		Radiant Sensitive Area	chip release Z chip release Y1		0.08 0.13		mm ² mm ²
V402	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 740 nm, Vout() not saturated; chip release Z		8.0		mW/ cm ²
			chip release Y1		4.4		mW/ cm ²
Device	e Specific:	iC-PN2624					
V501	Aph()	Radiant Sensitive Area	chip release Z chip release Y1 chip release X		0.1 0.07 0.06		mm ² mm ² mm ²
V502	E()mxr	Irradiance For Max. Signal Level	$\lambda_{\text{LED}} = 740 \text{nm}$, Vout() not saturated;		0.00		111111
7002	L()IIIXI	interior of Max. eight Eevel	chip release Z		6.5		mW/ cm ²
			chip release Y1		11.0		mW/ cm ²
			chip release X		13.0		mW/ cm ²
		iC-PN3356			r		
V601		Radiant Sensitive Area	chip release Z chip release Y		0.08 0.10		mm ² mm ²
V602	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 740 nm, Vout() not saturated; chip release Z		8.0		mW/ cm ²
			chip release Y		6.5		mW/ cm ²
Device	e Specific:	iC-PN3924					
V901	Aph()	Radiant Sensitive Area	chip release Z chip release Y		0.09 0.11		mm ² mm ²
V902	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 740 nm, Vout() not saturated; chip release Z		6.4		mW/ cm ²
			chip release Y		5.8		mW/ cm ²

Rev F2, Page 10/16

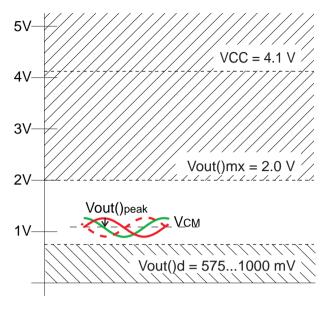


Figure 1: Permissible maximum output voltage range and example of typical output voltage.

PHASED ARRAY NONIUS ENCODERS

Rev F2, Page 11/16

DEVICE OVERVIEW

Master P/O Code Material [mm] begin / en Ø 18 Series (disc diameter 18 mm, bore hole 3.0 mm) iC-PN1864 64 LSHC16S 18-64N glass 6.905 5.3 / 8	8.4 19	[el.deg.]
iC-PN1864 64 LSHC16S 18-64N glass 6.905 5.3 / 8		
	8.4 21	
iC-PN1856 256 LSHC15S 18-256N glass 6.905 5.3 / 8		\pm 9.8
6 Series (disc diameter 26.0 mm, bore hole 11.6 mm)		
iC-PN2656 256 LSHC4S 26-256N glass 10.905 9.3 / 1		± 9.8
iC-PN2612 512 LSHC11S 26-512N glass 10.905 9.3 / 1	2.5 22	± 4.9
iC-PN2624	2.5 23	± 4.9
H-Series (disc diameter 26.0 mm, bore hole 11.6 mm)		
iC-PNH2628 4 2x64 PNH6S 26-128 glass 10.905 9.4 / 1	2.4 20	± 19.6
iC-PNH2612 ⁴ 2x256 PNH3S 26-512 glass 10.905 9.4 / 1	2.4 22	± 9.8
iC-PNH2624 ⁴ 2x512 PNH5S 26-1024 glass 10.905 9.4 / 1	2.4 23	± 4.9
Ø 33 Series (disc diameter 33.0 mm, bore hole 18.0 mm)		
iC-PN3356 256 LSHC13S 33-256N glass 14.5 12.9 / 1	16.1 21	± 9.8
H-Series (disc diameter 33.2 mm, bore hole 18.0 mm)		
iC-PNH3312 ⁴ 2x256 PNH2S 33-512 glass 14.5 13.0 / 2	16.0 22	± 9.8
iC-PNH3348 ⁵ 2x1024 PNH1S 33-2048 glass 14.5 13.0 / 2	16.0 24	± 4.9
	·	
Ø 39 Series (disc diameter 39.0 mm, bore hole 13.0 mm)		
iC-PN3924 1024 LSHC12S 39-1024N glass 17.5 15.9 / 1	19.1 23	± 4.9
H-Series (disc diameter 39.0 mm, bore hole 18.0 mm)		
iC-PNH3912 ⁴ 2x256 PNH8S 39-512 glass 17.5 16.0 / 2	19.0 22	± 4.9
iC-PNH3948 ⁴ 2x1024 PNH4S 39-2048 glass 17.5 16.0 / 2	19.0 24	± 4.9

¹ Optical center radius.

Table 1: Device overview

² Angle resolution per single turn; interpolated by iC-MN with 13 bit resolution.

³ Permissible maximum track-to-track phase deviation in electrical degree per master signal cycle.

⁴ Refer to iC-PNH Series datasheet available separately.

⁵ Refer to iC-PNH3348 datasheet available separately. EncoderBlue[®] is a trademark of iC-Haus GmbH. Device availability on request.

Rev F2, Page 12/16

APPLICATION CIRCUITS

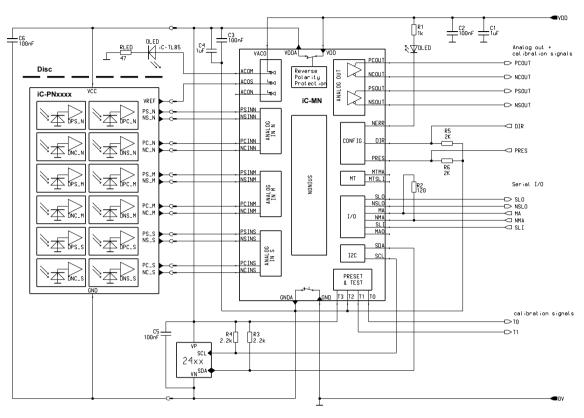


Figure 2: Application example of absolute encoder circuit.

Rev F2, Page 13/16

DESIGN REVIEW: Notes On Chip Functions

iC-PNxxxx.	iC-PNxxxx.			
No.	Function, Parameter/Code	Description and Application Hints		
1		Refer to former datasheet releases.		

Table 2: Notes on chip functions regarding iC-PNxxxx chip releases 0.

iC-PNxxxx Z	iC-PNxxxxZ			
No.	Function, Parameter/Code	Description and Application Hints		
1		Changes to Elec. Char. are documented by this datasheet release, including the extension of operating voltage down to 4.1 V (safe by design).		

Table 3: Notes on chip functions regarding iC-PNxxxx chip release Z.

iC-PNxxxx	iC-PNxxxx Y1, Y1H, Y2		
No.	Function, Parameter/Code	Description and Application Hints	
1	HD Phased Array	Chip release utilizes a high definition phased array layout.	

Table 4: Notes on chip functions regarding iC-PNxxxx chip release Y1, Y1H, Y2.

iC-PNxx	iC-PNxxxx X			
No.	Function, Parameter/Code	Description and Application Hints		
1	HD Phased Array	Chip release utilizes a high definition phased array layout. Thickness of glass lid reduced to 200 µm.		

Table 5: Notes on chip functions regarding iC-PNxxxx chip release X.

Rev F2, Page 14/16

REVISION HISTORY

Rel.	Rel. Date ¹	Chapter	Modification	Page
A1	2008		Initial introduction.	

Rel.	Rel. Date ¹	Chapter	Modification	Page
E1	2017-02-08		New datasheet for iC-PN chip series	all

Rel.	Rel. Date ¹	Chapter	Modification	Page
E2	2017-11-21	ELECTRICAL CHARACTERISTICS	Minor adaption of IC test limits: Item 304: max. limit 1300 μA, item 403: max. limit 2000 μA Items V501, V502: chip release X added to iC-PN2624	8

Rel.	Rel. Date ¹	Chapter	Modification	Page
E3	2018-08-17	DESCRIPTION	Obsolete devices removed (iC-PN3312, iC-PN3324)	
		PACKAGING INFORMATION	Pad layout updated.	2
		ELECTRICAL CHARACTERISTICS	Item 102: condition added, limits adapted Item 301: comment added, and Figure 1 added	8
		DEVICE OVERVIEW	Footnote added on obsolete devices.	11
		DESIGN REVIEW	Chip release Y2 added	13
		ORDERING INFORMATION	Obsolete devices removed.	16

Rel.	Rel. Date ¹	Chapter	Modification	Page
E4	2020-03-02	PACKAGING INFORMATION	AOI criteria added	3
		ORDERING INFORMATION	Eval board added for iC-PN3356	16

Rel.	Rel. Date ¹	Chapter	Modification	Page
E5	2020-06-16	DESCRIPTION	iC-PN18xx: preliminary marking removed	2
		DEVICE OVERVIEW	Listing and footnote 5 updated	11
		ORDERING INFORMATION	Listing updated	16

Rel.	Rel. Date ¹	Chapter	Modification	Page
F1	2021-04-15	PACKAGING INFORMATION	Update of footnote: hyperlink to customer information	
		PACKAGE DIMENSIONS	Update of package drawing and footnote, drawing added for chip release X	
		THERMAL DATA	Item T03: hyperlink to customer information	
		ELECTRICAL CHARACTERISTICS	Items V101, V102, V201, V202 (iC-PN18xx): chip release X added	8

Rel.	Rel. Date ¹	Chapter	Modification	Page
F2	2021-09-27		Item 003: correction of condition and limits Item V301, V302: chip release Y1H added	8
		DESIGN REVIEW	Inclusion of chip release Y1H. Table of chip release X separated and updated for clarity.	13

¹ Release Date format: YYYY-MM-DD

Rev F2, Page 15/16

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

PHASED ARRAY NONIUS ENCODERS

Rev F2, Page 16/16

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-PNxxxx	15-pin optoBGA, 6.2 mm x 5.2 mm, thickness 1.7 mm RoHS compliant 32-pin optoQFN, 5 mm x 5 mm, thickness 0.9 mm	xxxx = device version xxxx = device version	iC-PNxxxx oBGA LSH2C iC-PNxxxx oQFN32-5x5
	RoHS compliant		
Code Disc	Glass disc 1.0 mm	nn = design number aa = diameter cccccc = master track CPR	LSHCnnS aa-ccccN
		for iC-PN1864 (64 CPR) for iC-PN1856 (256 CPR) for iC-PN2656 (256 CPR) for iC-PN2612 (512 CPR) for iC-PN2624 (1024 CPR) for iC-PN3356 (256 CPR) for iC-PN3924 (1024 CPR)	LSHC16S 18-64N LSHC15S 18-256N LSHC4S 26-256N LSHC11S 26-512N LSHC1S 26-1024N LSHC13S 33-256N LSHC12S 39-1024N
Evaluation Kit	Kit with Scanner Module IC273 (61 mm x 64 mm), LED Module IC274 and Code Disc	xxxx = device version (availability on request)	iC-PNxxxx EVAL IC273
	TOET T GITA GOAD BIGG	for iC-PN2656 (256 CPR), incl. IR LED module (availability on request)	iC-PN2656 EVAL IC273
		for iC-PN3356 (256 CPR), incl. IR LED module (availability on request)	iC-PN3356 EVAL IC273
Illumination	IR LED module (28 mm x 29 mm) Blue LED module (28 mm x 29 mm)	with iC-SD85 (850 nm) with iC-TL46 (460 nm)	iC-SD85 EVAL IC274 iC-TL46 EVAL IC274
Mother Board Adapter Board	Adapter PCB (80 mm x 110 mm) Adapter PCB (41 mm x 41 mm), connects IC273 to MN1D	incl. ribbon cable incl. ribbon cable	iC277 EVAL IC277 iC306 EVAL IC306

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (0) 61 35 - 92 92 - 0
Am Kuemmerling 18 Fax: +49 (0) 61 35 - 92 92 - 192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners