

Rev E1, Page 1/22

FEATURES

- Fast flash converter
- Integrated glitch filter; minimum transition distance can be set using the optional resistor
- Selectable resolution of up to 64 steps per cycle and up to 16-fold interpolation
- Integrated instrumentation amplifiers with adjustable gain
- Direct connection of sensor bridges, no external components required
- ♦ 200 kHz input frequency with the highest resolution
- Incremental A QUAD B output of up to 3.2 MHz
- Reversed A/B phase selectable
- Index signal processing with 1/4 T gating (iC-NV), or with 1/2 T gating (iC-NVH)
- Sensor bridge calibration supportable by analog/digital test signals
- Low power consumption from single 5V supply
- TTL- /CMOS-compatible outputs
- Inputs and outputs protected against destruction by ESD

APPLICATIONS

signals

٠

۲

Angle interpolation from

MR sensor systems

orthogonal sinusoidal input

Linear and rotary encoders

DESCRIPTION

iC-NV is a monolithic A/D converter which produces two digital A/B incremental signals phase-shifted at 90° from two sinusoidal input signals, also phase-shifted at 90°.

The converter operates on the flash principle with fast single comparators. The back-end signal processing circuit includes a no-delay glitch filter which can be set so that only clearly countable incremental signals are generated. The minimum transition distance for outputs A and B can be set via an external resistor and adapted to suit the application on hand. For static input signals hysteresis prevents the switching of the outputs.

By programming the pins the interpolator can be set to nine different resolutions between 4 and 64 angle steps per cycle; multiplication values of between 1 and 16 are possible for the frequency. The phase relation between the sine/cosine input signals and the A/B incremental signals generated can be selected here.

The device also incorporates an index signal processing circuit which generates a digital zero pulse at Z dependent on the analog sine/cosine input signals and the enable input ZERO. Alternatively, the converter MSB can also be output at Z for synchronization purposes in an absolute measuring system.

The input amplifiers are configured as instrumentation amplifiers and permit sensor bridges to be directly connected without the need for external resistors. The input amplification has nine selectable settings which have been graded to suit standard sensor signals of between approx. 10 mVpk and 1 Vpk. If external calibration of the sensor bridge is required, e.g. with regard to offset, various test functions can be activated. By this the amplified analog input signals come available at the outputs, for instance.

CHaus

Rev E1, Page 3/22

CONTENTS

PACKAGING INFORMATION	4
PIN CONFIGURATION TSSOP20 4.4mm (top view)	4
PACKAGE DIMENSIONS	5
ABSOLUTE MAXIMUM RATINGS	6
THERMAL DATA	6
ELECTRICAL CHARACTERISTICS	7
ELECTRICAL CHARACTERISTICS: Diagrams	8
DESCRIPTION OF FUNCTIONS	10
Input Amplifiers	10
Converter Core, Transition Distance Control.	10
Digital Processing Unit	10
Resolution, frequency ranges	11
Hysteresis	11

Zero pulse	11
Oscilloscope diagrams	13
TEST FUNCTIONS	14
Description of test signals	15
APPLICATIONS INFORMATION	16
Principal Input Circuits	16
Wiring photodiode arrays with common	
cathodes	16
Wiring photodiode arrays with common anodes	18
Wiring magneto-resistor bridge sensors	18
MR Sensor System Application Example	19
EVALUATION BOARD	20
DESIGN REVIEW: Function Notes	20
REVISION HISTORY	21

iC-NV, iC-NVH

6-Bit Sin/D Flash Converter

Rev E1, Page 4/22

PACKAGING INFORMATION

PIN CONFIGURATION TSSOP20 4.4mm (top view)

PIN FUNCTIONS

No.	Name	Function
1	PCOS	Input Cosine +
2	NCOS	Input Cosine -
3	SG1	Gain Select Input
4	SG0	Gain Select Input
5	VREF	Reference Voltage Output
6	ROT	A/B Phase Selection,
		Test Signal S6 Input/Output
7	SF1	Resolution Selection,
		Test Signal S5 Input/Output
8	SF0	Resolution Selection,
		Test Signal S4 Input/Output
9	GND	Ground (digital)
10	Z (MSB)	Index Signal Output Z
		(MSB Output when ROT= open),
	_	Test Signal S3 Input/Output
11	В	Incremental Output B,
		Test Signal S2 Input/Output
12	A	Incremental Output A,
		Test Signal S1 Input/Output
13	VDD	+5 V Supply Voltage (digital)
14	RCLK	Min. Transition Distance Preset Input
	V 0 0 1	(use is optional; can be wired to VCC)
15		+5 V Supply Voltage (analog)
16	GNDA '	Ground (analog)
1/	PZERO	Index Signal Enable Input +
18	NZERO	Index Signal Enable Input -
19	PSIN	Input Sine +
20	NSIN	input Sine -

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes), <D-CODE> = date code (subject to changes); ¹ External connections linking VCC to VDD and GND to GNDA are required.

Rev E1, Page 5/22

PACKAGE DIMENSIONS

All dimensions given in mm. Tolerances of form and position according to JEDEC M0–153

RECOMMENDED PCB-FOOTPRINT

drb_tssop20-1_pack_1, 8:1

Rev E1, Page 6/22

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol Parameter Cond		Conditions		Unit	
No.				Min.	Max.	
G001	VCC	Voltage at VCC		-0.3	6	V
G002	VDD	Voltage at VDD		-0.3	6	V
G003	V()	Voltage at NSIN, PSIN, NCOS, PCOS, NZERO, PZERO, SG1, SG0, RCLK SF1, SF0, ROT, A, B, Z	V() < VCC + 0.3 V V() < VDD + 0.3 V	-0.3	6	V
G004	Imx(VCC)	Current in VCC		-50	50	mA
G005	lmx(GNDA)	Current in GNDA		-50	50	mA
G006	lmx(VDD)	Current in VDD		-50	50	mA
G007	lmx(GND)	Current in GND		-50	50	mA
G008	lmx()	Current in NSIN, PSIN, NCOS, PCOS, NZERO, PZERO, SG1, SG0, VREF, RCLK, SF1, SF0, ROT, A, B, Z		-10	10	mA
G009	llu()	Pulse Current in all pins (Latch-up strength)	pulse duration < 10 µs	-100	100	mA
G010	Vd()	ESD Susceptibility at all pins	100 pF discharged through $1.5 k\Omega$		2	kV
G011	Tj	Junction Temperature		-40	150	°C

THERMAL DATA

Operating Conditions: VCC = VDD = $5V \pm 10\%$

ltem	Symbol	Parameter	Conditions					
No.	-			Min.	Тур.	Max.		
T01	Та	Operating Ambient Temperature Range		-25		85	°C	
			TSSOP20 ET -40/125	-40		125	°C	
T02	Ts	Storage Temperature Range		-40		165	°C	

Rev E1, Page 7/22

ELECTRICAL CHARACTERISTICS

Opera	ting Conditio	ns: VCC = VDD = 5 V ± 10 %, Tj =	40125 °C, unless otherwise noted.			-)	
ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device	·					
001	VCC, VDD	Permissible Supply Voltage		4.5		5.5	V
002	I(VCC)	Supply Current in VCC	fin() = 200 kHz; A, B, Z open			15	mA
003	I(VDD)	Supply Current in VDD	fin() = 200 kHz; A, B, Z open			5	mA
004	Von	Power-On Reset Threshold		2		3.8	V
005	Voff	Power-Down Reset Threshold		1		2.2	V
006	Vhys	Power-On Reset Hysteresis		0.4		1.8	V
007	Vc()hi	Clamp Voltage hi at NSIN, PSIN, NCOS, PCOS, NZERO, PZERO, SG1, SG0, ROT, SF1, SF0, VREF, RCLK	Vc()hi = V()- VCC; I() = 1 mA, other pins open	0.3		1.6	V
008	Vc()lo	Clamp Voltage Io at NSIN, PSIN, NCOS, PCOS, NZERO, PZERO, SG1, SG0, ROT, SF1, SF0, VREF, RCLK, A, B, Z	I() = -1 mA, other pins open	-1.5		-0.3	V
009	Vc()hi	Clamp Voltage hi at A, B, Z	Vc()hi = V() - VDD; I() = 1 mA, other pins open	0.3		1.6	V
Input	Amplifiers N	ISIN, PSIN, NCOS, PCOS	1				
101	Vos()	Input Offset Voltage	Vin() see table gain select GAIN = 1066 GAIN = 37.1	-7 -10		7 10	mV mV
102	lin()	Input Current	V()=0VVCC	-50		50	nA
103	G()	Gain	GAIN following table gain select	95		101	%
104	Grel	Gain Ratio SIN/COS	GAIN following table gain select	98		102	%
105	fhc	Cut-off Frequency	GAIN = 66.667 GAIN = 3.03	0.5 2.3			MHz MHz
106	SR	Slew Rate	GAIN = 66.667 GAIN = 3.03	10 15			V/µs V/µs
Signa	Processing	g: Converter Accuracy	1		1		
201	AAabs	Absolute Angle Accuracy	referred to 360° input signal, GAIN =3.03; VPin = 22.6 Vpp, VNin = 2.5 Vdc VPin = 11.3 Vpp, VNin = 2.5 Vdc	-1 -2		1 2	DEG DEG
202	AArel	Relative Angle Accuracy	referred to period of A, B (see figure 7) GAIN = 3.03	-10		10	%
		Poforonoo Voltago at V/PEE	$I(1/DEE) = 1 m \Lambda + 1 m \Lambda$	10		52	WVCC
Signal				40		52	/0VCC
501	PCIK	Permissible Resistor at	DIV = 1 (IPE = 10, 12, 16)	17		500	kO
501	KOLK	RCLK vs. GNDA	DIV = 2 (IPF = 5, 8) DIV = 4 (IPF = 3, 4) DIV = 8 (IPF = 2) DIV = 16 (IPF = 1)	23 12 6 3		500 500 500 500 500	kΩ kΩ kΩ kΩ
502	DT()	Minimum Transition Distance	R(RCLK, GNDA) = $47 \text{ k}\Omega \ 1\%$; DIV = 1 (see figure 4) DIV = 16 (see figure 2)	45 490		78 1000	ns ns
503	DT()	Minimum Transition Distance	V(RCLK) = VCC; DIV = 1 DIV = 16	30 420		78 1000	ns ns
Zero C	Comparator						
701	Vos()	Input Offset Voltage	V() = Vcm()	-20		20	mV
702	lin()	Input Current	V()=0VVCC	-50		50	nA
703	Vcm()	Common-Mode Input Volt. Range		1.4		VCC -1.5	V
704	Vdm()	Differential Input Voltage Range		0		VCC	V

Rev E1, Page 8/22

ELECTRICAL CHARACTERISTICS

Operating Conditions: VCC = VDD = 5 V \pm 10 %, Tj = -40...125 °C, unless otherwise noted.

Item	Symbol Parameter Conditions					Unit		
No.				Min.	Тур.	Max.		
Signal	Signal Processing: Inputs SG1, SG0, ROT, SF1, SF0							
801	Vt()hi	Input Threshold Voltage hi		60		78	%VCC	
802	Vt()lo	Input Threshold Voltage lo		25		40	%VCC	
803	V0()	Mid Level Voltage		43		57	%VCC	
804	Ri()	Input Resistance		45	150	220	kΩ	
Signal	Processing	g: Outputs A, B, Z						
D01	Vs()hi	Saturation Voltage hi	Vs()hi = VDD - V(); I() = -4 mA			0.4	V	
D02	Vs()lo	Saturation Voltage lo	I() = 4 mA			0.4	V	
D03	tr()	Rise Time	CL() = 50 pF			60	ns	
D04	tf()	Fall Time	CL() = 50 pF			60	ns	

ELECTRICAL CHARACTERISTICS: Diagrams

Figure 3: Adjusting the minimum transition distance via resistor RCLK.

Figure 2: Similar to Figure 1; the minimum transition distance can be reduced by smaller resistors RCLK.

Figure 4: Similar to Figure 3; minimum transition distance for smaller RCLK resistor values.

Rev E1, Page 9/22

Figure 7: Definition of the relative angle accuracy.

Figure 6: Temperature drift of the reduced minimum transition distance versus 27°C (VDD= 5V).

DESCRIPTION OF FUNCTIONS

Input Amplifiers

Input stages SIN and COS are configured as instrumentation amplifiers. The gain is dependent on the amplitude of the input signal and set via pins SG0 and SG1 according to the following table. So that the DC level to be adjusted half of the supply voltage is available at VREF.

GAIN	SELECT								
			Sine/Cosine Input Signal Levels Vin()						
SG1	SG0	Gain	Amp	Amplitude		/alue (DC)			
			differential	single ended	differential	single ended			
hi	hi	66.667	up to 60 mVpp	up to 120 mVpp	0.7 V VCC-1.2 V	0.7 V VCC-1.2 V			
hi	open	50.000	up to 80 mVpp	up to 160 mVpp	0.7 V VCC-1.2 V	0.7 V VCC-1.2 V			
hi	lo	33.333	up to 120 mVpp	up to 240 mVpp	1.2 V VCC-1.2 V	1.2 V VCC – 1.3 V			
open	hi	20.000	up to 0.2 Vpp	up to 0.4 Vpp	1.2 V VCC-1.2 V	1.2 V VCC-1.3 V			
open	open	14.300	up to 0.28 Vpp	up to 0.56 Vpp	0.7 V VCC-1.3 V	0.8 V VCC-1.4 V			
open	lo	10.000	up to 0.4 Vpp	up to 0.8 Vpp	1.2 V VCC-1.3 V	1.3 V VCC – 1.5 V			
lo	hi	7.125	up to 0.56 Vpp	up to 1.1 Vpp	1.2 V VCC – 1.4 V	1.4 V VCC – 1.7 V			
lo	open	4.000	up to 1 Vpp	up to 2 Vpp	1.2 V VCC – 1.6 V	1.6 V VCC-2.1 V			
lo	lo	3.030	up to 1.3 Vpp	up to 2.6 Vpp	1.2 V VCC – 1.7 V	1.8 V VCC-2.4 V			

Table 4: Input gain

Converter Core, Transition Distance Control

For each of the 64 comparator levels the sine/cosine input signals are calculated according to the theorem of addition and are fed into single comparators. This procedure guarantees a very high converter frequency yet also means that consecutive comparators can switch in a very short space of time in the event of input signal disturbances.

The comparator outputs are thus fed into a transition distance control unit. This monitors the temporal sequence of the switching operations in such a way that each event is delayed by the length of the settable minimum gap to the previous event. If no errors arise the transitions pass the control unit without a time delay. Synchronization with a fixed clock pulse does not occur.

The minimum transition distance is set via an external resistor positioned between RCLK and GNDA. Alterna-

tively, pin RCLK can be shorted to VCC. Depending on the resolution maximum input frequencies of at least 200kHz are then guaranteed (see table of resolution).

Digital Processing Unit

The transition distance control unit is followed by the digital processing unit. This is where the transition events are converted into a pulse sequence for the incremental outputs A and B. The square-wave signals generated have a phase shift of +90° or -90°, depending on the direction of rotation. The phase relation between the sine/cosine input signals and the A/B output signals can be set using programming pin ROT.

Alternatively, the MSB of the converter can be output to Z when ROT is high. With the zero signal this changes to high and has the pulse length of half a cycle. This signal can be used to synchronize the high-order tracks of an absolute-value encoder device.

A/B OUTPUT PHASE SELECTION							
ROT	Input signals	Output signals A, B; Z					
lo	positive; COS leading SIN	B leading A; Z					
lo	negative; SIN leading COS	A leading B; Z					
open	positive; COS leading SIN	B leading A; MSB					
open	negative; SIN leading COS	A leading B; MSB					
hi	positive; COS leading SIN	A leading B; Z					
hi	negative; SIN leading COS	B leading A; Z					

Table 5: Output phase

Rev E1, Page 11/22

Resolution, frequency ranges

Nine different resolutions or interpolation factors (IPF) can be programmed via inputs SF0 and SF1. Resolutions 16, 12 and 10 are generated at the core of the converter itself. Resolutions of less than 10 are produced by division DIV in the digital processing unit. The minimum transition distance at outputs A and B corresponds to that of the transition distance control multiplied by the divisor of the digital processing unit.

The minimum output transition distance (maximum output frequency) should be adjusted to tarry with the overall system (bandwidth of the transfer medium, sampling rate of the counter). The maximum input frequency is determined by the transition distance control and the resolution of the converter core (16, 12 or 10). This frequency can be increased for resolutions of less than 10 with an external resistor at RCLK. The following table gives possible settings.

RESOL	RESOLUTION							
SF1	SF0	IPF	DIV internal division	fin _{MAX}	fin_{MAX} for RCLK = VCC or RCLK = 47 kΩ			
hi	hi	16	1	200 kHz, RCLK = 47 kΩ	200 kHz			
hi	open	12	1	260 kHz, RCLK = 47 kΩ	260 kHz			
hi	lo	10	1	320 kHz, RCLK = 47 kΩ	320 kHz			
open	hi	8	2	400 kHz, RCLK = 23 k Ω	200 kHz			
open	open	5	2	640 kHz, RCLK = 23 k Ω	320 kHz			
open	lo	4	4	800 kHz, RCLK = 12 kΩ	200 kHz			
lo	hi	3	4	1.04 MHz, RCLK = $12 \text{ k}\Omega$	260 kHz			
lo	open	2	8	1.6 MHz, RCLK = $6 \text{ k}\Omega$	200 kHz			
lo	lo	1	16	$(3.2 \text{ MHz}), \text{ RCLK} = 3 \text{ k}\Omega$	200 kHz			

Table 6: Resolution

Hysteresis

iC-NV has an angular hysteresis which is independent of the input amplitude and phase. It prevents the outputs from switching when the inputs are static.

When the direction of rotation is reversed the integrated hysteresis circuit prompts the change in direction to be

positive direction of rotation

signaled at the outputs; the hysteresis causes a delay here. Figure 8 shows this effect for an interpolation factor of 8.

According to the resolution the hysteresis is set to a fixed value as listed in Table 7.

Figure 8: Effect of angle hysteresis

ANGLE HYSTERESIS									
Interpolation factor IPF	1	2	3	4	5	8	10	12	16
Hysteresis [deg]	5.625°	5.625°	7.5°	5.625°	9°	5.625°	9°	7.5°	5.625°
Referred to A/B period	1/64	1/32	1/16	1/16	1/8	1/8	1/4	1/4	1/4

Table 7: Hysteresis

Zero pulse

One zero pulse (index) is generated per cycle from the sine/cosine inputs. To be output to Z it must be enabled by the comparator at differential inputs PZERO and NZERO.

For iC-NV: The width of the zero pulse is **a quarter** of the length of the A and/or B signal output cycle. When **Z is high**, simultaneously **AB are high**.

For iC-NVH: The width of the zero pulse is half the length of the A and/or B signal output cycle. When Z is high, simultaneously A is high.

The position of the zero pulse dependent on the interpolation factor and the direction of rotation is given in the following tables.

INDEX	INDEX WIDTH and POSITION of iC-NV							
		Z Position	Z Position					
IPF	Z Width	with positive direction of rotation	with negative direction of rotation					
16	5.625°	45° 50.625°	39.375 ° 45 °					
12	7.5°	45° 52.5°	37.5° 45°					
10	9°	45° 54°	36 ° 45 °					
8	11.25°	39.375° 50.625°	33.75 ° 45 °					
5	18°	36 ° 54 °	27 ° 45 °					
4	22.5°	33.75 ° 56.25 °	28.125° 50.625°					
3	30 °	30 ° 60 °	22.5 ° 52.5 °					
2	45°	22.5 67.5 °	16.875° 61.875°					
1	90 °	0 ° 90 °	354.375 ° 84.625 °					

Table 8: Index width and position (iC-NV)

INDEX WIDTH and POSITION of iC-NVH				
	Z Position		Z Position	
IPF	Z Width	with positive direction of rotation	with negative direction of rotation	
16	11.25 °	45° 56.25°	39.375° 50.625°	
12	15°	45 ° 60 °	37.5 ° 52.5 °	
10	18°	45 ° 63 °	36 ° 54 °	
8	22.5 °	39.375° 61.875°	33.75° 56.25°	
5	36 °	36 ° 72 °	27 ° 63 °	
4	45°	33.75° 78.75°	28.125° 73.125°	
3	60 °	30 ° 90 °	22.5° 82.5°	
2	90 °	22.5 112.5 °	16.875,° 106.875°	
1	180°	0 ° 180 °	354.375° 174.625°	

Table 9: Index width and position (iC-NVH)

Oscilloscope diagrams

The following diagrams give the input and output signals for various directions of rotation and ROT settings for interpolation factors 1 and 16.

Figure 9: iC-NV: ROT= lo/open, COS leading SIN

Figure 11: iC-NV: ROT= hi, COS leading SIN

Figure 13: iC-NVH: ROT= lo/open, COS leading SIN

Figure 15: iC-NVH: ROT= hi, COS leading SIN

Figure 10: iC-NV: ROT= lo/open, SIN leading COS

Figure 12: iC-NV: ROT= hi, SIN leading COS

Figure 14: iC-NVH: ROT= lo/open, SIN leading COS

Figure 16: iC-NVH: ROT= hi, SIN leading COS

TEST FUNCTIONS

Device iC-NV features internal test functions which can be used to ease sensor bridge calibration procedures if such are required. To enable test operation, a threshold current of approx. 1 mA present at pin RCLK must be exceeded during power up. Subsequently, four different test modes are selectable starting with mode 3 set initially.

Figure 17: Activating test functions via pin RCLK.

Description of test signals

Test Signal	Description			
Mode 3				
ZK	Un-gated index/zero comparator output			
EXKA	All comparators EXOR-gated			
SIN, NSIN, COS, NCOS	Amplifier outputs (signal valid with no load only)			
Mode 0				
KA(0)	Comparator 0 $^{\circ}-$ 180 $^{\circ}\rightarrow$ Duty cycle indicates offset of sine signal.			
KA(16)	Comparator 90 $^\circ-$ 270 $^\circ\rightarrow$ Duty cycle indicates offset of cosine signal.			
KA(X) = KA(8) EXOR KA(24)	Comparator 45 $^\circ-225^\circ\to$ Duty cycle indicates amplitude ratio of sine/cosine signal. Offset calibration must be performed first.			
Mode 1				
CLK, UP, DN	Control signals for external counters.			
Mode 2				
NENOS, CLK, DALL	Test signals for iC-Haus device test.			

Table 10: Test modes

Test Mode	S1 (A)	S2 (B)	S3 (Z)	S4 (SF0)	S5 (SF1)	S6 (ROT)
Mode 3	^{zк} lo				cos	NCOS
Mode 0		KA(16)				
Mode 1		^{∪₽} hi lo	^{DN} lo hi			
Mode 2						

Table 11: Illustration of output signals during test modes

APPLICATIONS INFORMATION

Principal Input Circuits

Figure 18: Input circuit for voltage signals of 1Vpp with no ground reference. When grounds are not separated the connection NSIN to VREF must be omitted.

Figure 20: Input circuit for single-side voltage or current source signals with ground reference (adaptation via resistors R3, R4).

Figure 22: Input circuit for differential current sink sensor outputs, e.g. using Opto Encoder iC-WG.

Figure 19: Input circuit for current signals of 11 µA. In this circuit offset adjustment is not possible.

Figure 21: Simplified input wiring for single-side voltage signals with ground reference.

Figure 23: Input circuit for sine encoders (0.8 Vpp to 1.2 Vpp) with 120Ω termination and low-pass filtering. R2/R3 serve as protection against ESD and transients, R4/R5 reduce the input signal to suit an input gain of 8.

Rev E1, Page 17/22

Wiring photodiode arrays with common cathodes

- Figure 24: Wiring scheme with offset adjustment possibility; the resistor values must be selected with respect to the photo currents available (e.g. $65 \text{ k}\Omega$ for max. $16 \mu\text{Apk}$ at GAIN = 3, or $1 \mu\text{A}$ at GAIN = 50 respectively).
- Figure 25: Additional adjustment possibility for amplitude differences; settings at P3 must be done first.

Figure 26: Photodiode scanning circuit using ET2010 pre-amp and adjustment device.

Rev E1, Page 18/22

Wiring photodiode arrays with common anodes

Figure 27: Wiring scheme with offset adjustment possibility; the resistor values must be selected with respect to the photo currents available (e.g. $65 \text{ k}\Omega$ for max. $16 \mu\text{A}$ pk at GAIN = 3, or $1 \mu\text{A}$ at GAIN = 50 respectively).

Figure 28: Additional adjustment possibility for amplitude differences; settings at P3 must be done first.

Figure 29: Wiring MR sensor bridges with offset adjustment possibility; setup pins remaining open can be linked to VREF to enhance interference immunity.

Figure 30: Wiring MR half-bridge sensors with offset adjustment possibility.

Wiring magneto-resistor bridge sensors

Rev E1, Page 19/22

MR Sensor System Application Example

Figure 31: Complete MR sensor system for 24 V environment featuring low-noise switch-mode power supply linear regulator combo iC-WD and line driver iC-WE, enabling data transmission via 100 m cable length. The maximum output frequency is limited to approx. 280 kHz by R1 = 500 kΩ to comply with speed-limited external counters (pins SF1 and SF0 are open and select IPF = 5). C7/C8 can help to improve noise immunity additionally, for instance with motor applications.

EVALUATION BOARD

An evaluation board for iC-NV is available for test purposes. Figures 32, 33 and 34 show the wiring as well as the top and bottom layout of the test PCB.

Figure 32: Circuit diagram of the evaluation board (pot P1 is not populated).

Figure 33: Evaluation board (component side)

Figure 34: Evaluation board (bottom side

Rev E1, Page 21/22

DESIGN REVIEW: Function Notes

iC-NV X1					
No.	Function, Parameter/Code	Description and Application Notes			
		None at time of release.			

Table 12: Notes on chip functions regarding iC-NV chip release X1.

iC-NVH 1					
No.	Function, Parameter/Code	Description and Application Notes			
		None at time of release.			

Table 13: Notes on chip functions regarding iC-NVH chip release 1.

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
C1	2007-11-26		Release 2007	

Rel.	Rel. Date*	Chapter	Modification	Page
D1	2009-01-12	ABSOLUTE MAXIMUM RATINGS	Item G003: Symbol name Items G009, EG01: update of conditions Item TG2: max. storage temperature 150 °C	3
		DESCRIPTION OF FUNCTIONS	Table Index Position renamed to Index Position Column added for ZWIDTH Subtitle changed	9
		Disclaimer	Text update	12

Rel.	Rel. Date*	Chapter	Modification	Page
E1	2019-09-20	All	General update, inclusion of iC-NVH	all
		ABSOLUTE MAXIMUM RATINGS	G012 moved to Thermal Data T02	6
		DESCRIPTION OF FUNCTIONS	Section Hysteresis: description updated Section Zero Pulse: description added for iC-NVH (Z position values corrected) Section Oscilloscope Diagrams: figures added for iC-NVH	11, 12, 13
		APPLICATIONS INFORMATION	Figure 23 added	16
		DESIGN REVIEW: Function Notes	Section added	21

iC-Haus expressly reserves the right to change its products and/or specifications. A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-NV	20-pin TSSOP, 4.4 mm RoHS compliant	index length 90 ° (AB-gated to 1/4 T)	iC-NV TSSOP20
		operating temperature range -40 °C to +125 °C	iC-NV TSSOP20 ET -40/125
iC-NVH	20-pin TSSOP, 4.4 mm RoHS compliant	index length 180 ° (A-gated to 1/2 T)	iC-NVH TSSOP20
		operating temperature range -40 °C to +125 °C	iC-NVH TSSOP20 ET -40/125
Evaluation Board iC-NV	PCB, size approx. 80 mm x 100 mm		iC-NV EVAL NV1D

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners