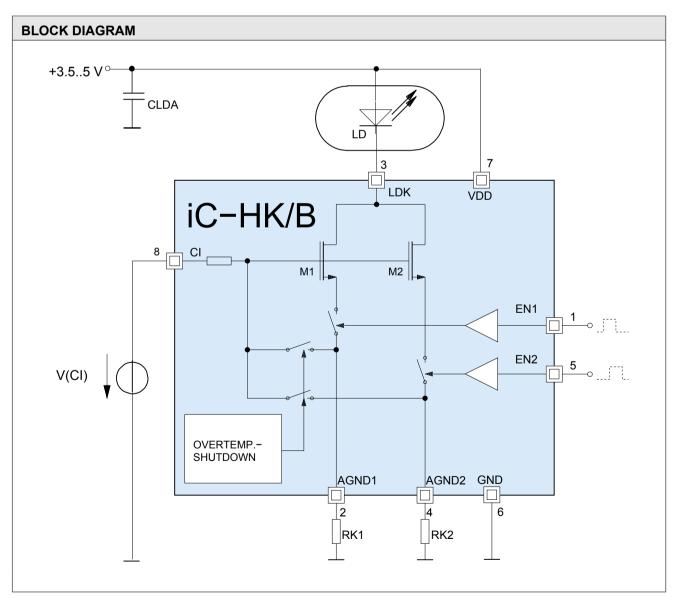


Rev G1, Page 1/10

FEATURES

- ♦ Laser switch for frequencies from CW up to 155 MHz
- Spike-free switching of the laser current
- Dual switching inputs with independent current control
- Operates as a voltage-controlled current source
- Pulsed operation with up to 700 mA per channel
- CW operation with up to 150 mA per channel
- Simple power control at pin CI
- Thermal shutdown
- Protective ESD circuitry
- iC-HKB for driving blue laser diodes
- Option: extended temperature range


APPLICATIONS

- Data transmission
- Laser scanning devices
- Optical storage devices

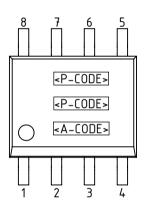
PACKAGES

SO8 thermal pad MSOP8 thermal pad

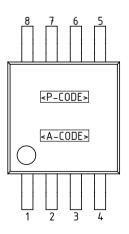
Rev G1, Page 2/10

DESCRIPTION

Laser Switch iC-HK/B enables the spike-free switching of laser diodes with well-defined current pulses at frequencies ranging from DC to 155 MHz.


The diode current is determined by the voltage at pin CI and by the resistors RK1 and RK2. The two fast switches are controlled independently via CMOS inputs EN1 and EN2. The laser diode can thus be turned on and off or switched between different current levels defined by the ratio of RK1 and RK2.

Each channel can be operated at 150 mA DC and up to 700 mA pulsed current depending on the frequency, duty cycle and heat dissipation.

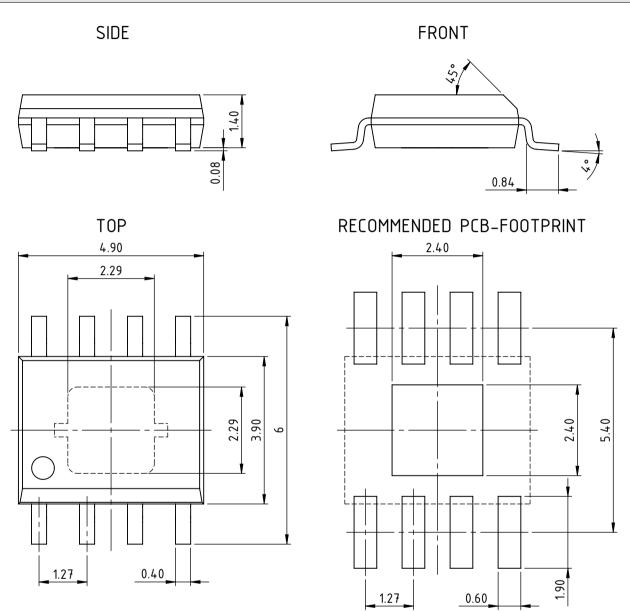

The integrated thermal shutdown feature prevents damage from excessive temperature.

PACKAGING INFORMATION SO8-TP, MSOP8-TP to JEDEC

PIN CONFIGURATION SO8-TP

PIN CONFIGURATION MSOP8-TP

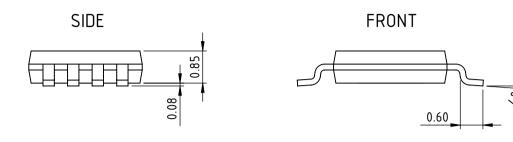
PIN FUNCTIONS No. Name Function

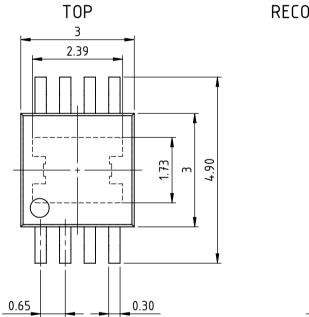

- 1 EN1 Channel 1 Switching Input
- 2 AGND1 Channel 1 Reference Ground
- 3 LDK Driver Output (LD Cathode)
- 4 AGND2 Channel 2 Reference Ground
- 5 EN2 Channel 2 Switching Input
- 6 GND Ground
- 7 VDD +5 V Supply Voltage
- 8 CI Voltage Reference for Current Control

The *Thermal Pad* is to be connected to a Ground Plane on the PCB.

PACKAGE DIMENSIONS SO8-TP

Rev G1, Page 3/10




All dimensions given in mm. Tolerances of form and position according to JEDEC MS-012 dra_so8-tp-3_pack_1, 10:1

Rev G1, Page 4/10

PACKAGE DIMENSIONS MSOP8-TP

RECOMMENDED PCB-FOOTPRINT

All dimensions given in mm. Tolerances of form and position according to JEDEC MO-187. dra_msop8-tp-1_pack_1, 10:1

Rev G1, Page 5/10

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VDD	Voltage at VDD		-0.7	6	V
G002	I(VDD)	Current in VDD		-10	150	mA
G003	V(CI)	Voltage at CI		-0.7	6	V
G004	I(LDK)	Current in LDK	DC current	-10	300	mA
G005	I(AGND1)	Current in AGND1	DC current	-150	10	mA
G006	I(AGND2)	Current in AGND2	DC current	-150	10	mA
G007	V()	Voltage at EN1, EN2, AGND1 and AGND2		-0.7	6	V
G008	V(LDK)	Voltage at LDK	іС-НК іС-НКВ	-0.7 -0.7	6 15	V V
G009	Vd()	Susceptibility to ESD at all pins	HBM, 100 pF discharged through $1.5 k\Omega$		1	kV
G010	Tj	Operating Junction Temperature		-40	150	°C
G011	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating Conditions: VDD = 3.5...5.5 V

ltem	em Symbol Parameter Conditions					Unit	
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range (extended range on request)		-25		85	°C
T02	Rthja		soldered to PCB, no additional cooling areas therm. pad soldered to approx. 2 cm ² cooling area		30	170 50	K/W K/W
T03	Rthja		soldered to PCB, therm. pad soldered to approx. 2 cm ² cooling area		30	60	K/W

Rev G1, Page 6/10

ELECTRICAL CHARACTERISTICS

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
Total	Device						
001	VDD	Permissible Supply Voltage		3.5		5.5	V
002	I(VDD)	Supply Current in VDD	CW operation	0		80	μA
003	I(VDD)	Supply Current in VDD	pulsed operation, f(EN1, EN2) = 150 MHz	0		150	mA
004	V(LDK)	Permissible Voltage at LDK	iC-HK iC-HKB	0 0		5.5 12	V V
005	Vc(CI)hi	Clamp Voltage hi at Cl	Vc(CI) = V(CI) - VDD, I(CI) = 10 mA, other pins open	0.4		1.25	V
006	Vc(EN)hi	Clamp Voltage hi at EN1, EN2	Vc(EN) = V(EN) – VDD, I(EN) = 1 mA, other pins open	0.4		1.25	V
007	Vc()lo	Clamp Voltage lo at VDD, LDK, Cl, EN1, EN2, AGND1, AGND2	I() = -10 mA, other pins open	-1.25		-0.4	V
008	lpd()	Pull-Down Current at CI, EN1, EN2		1		5	μA
009	Toff	Overtemperature Shutdown		110		150	°C
Laser	Control LD	OK, CI, EN1, EN2					
101	Icw(LDK)	Permissible CW Current in LDK (per channel)				150	mA
102	lpk(LDK)	Permissible Pulsed Current in LDK (per channel)	f > 100 kHz, thi/T < 1:10			700	mA
107	Vs(LDK)	Saturation Voltage at LDK	I(LDK) = 40 mA I(LDK) = 60 mA I(LDK) = 150 mA, iC-HK I(LDK) = 150 mA, iC-HKB			1.2 1.3 1.5 1.8	V V V V
108	I0(LDK)	Leakage Current in LDK	ENx = Io, V(LDK) = VDD		0	10	μA
109	tr()	LDK Current Rise Time	lop = 150 mA, I(LDK): 10% \rightarrow 90%lop, cf. Fig. 3			1.5*	ns
110	tf()	LDK Current Fall Time	lop(LDK) = 150 mA, I(LDK): 90% \rightarrow 10%lop, cf. Fig. 3			1.5*	ns
111	tp()	Propagation Delay $V(ENx) \rightarrow I(LDK)$	ENx hi \leftrightarrow lo, V(50%) \rightarrow I(50%)	1*		3*	ns
112	Vt(ENx)	Input Threshold Voltage		33	50	67	%VDD
113	V(CI)	Permissible Voltage at CI	$RKx \leq 1\Omega$	0 0		3.5 5.5	V V
114	Vt(CI)	Threshold Voltage at CI	l(LDK) < 5 mA Tj = -40 °C	0.75		1.15 1.25	V V
115	CR()	Current Matching Channel1/Channel2	V(CI) = 0VDD, I(LDK) = 30300 mA, RK1 = RK2 Tj = -40 °C	0.9	1	1.1 1.2	

Rev G1, Page 7/10

ELECTRICAL CHARACTERISTICS DIAGRAMS

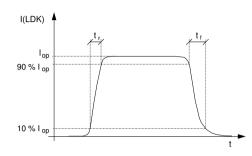


Figure 1: Laser current pulse in LDK

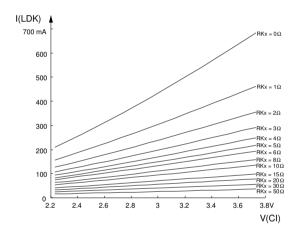
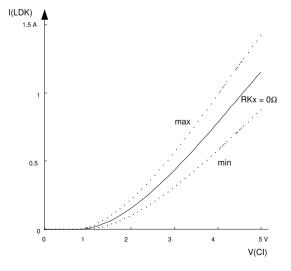
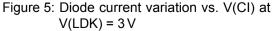




Figure 3: Diode current vs. V(CI) at Tj = 27 °C

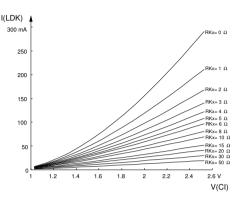


Figure 2: Diode current vs. V(CI) at Tj = 27 °C



Figure 4: Diode current variation vs. V(CI) at V(LDK) = 3 V

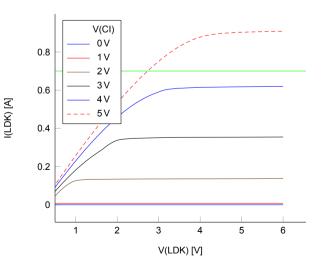


Figure 6: Output Characteristics of LDK

Rev G1, Page 8/10

DESCRIPTION OF FUNCTIONS

Laser current dependency of V(CI), RK1, RK2

Depending on the laser diode different diode currents are necessary to obtain the required laser power. The values for V(CI), RK1 and RK2 can be determined for the required diode current at room temperature from the opposite diagram. A parallel to the x axis must be drawn through the desired diode current. Either RKx can be obtained for a required value of V(CI) or the respective value of V(CI) can be achieved for a given RKx. For RKx > 1 Ω V(CI) must be limited to 3.5 V (cf. Electrical Characteristics No. 113).

Thermal Shutdown

iC-HK/B is protected by an integrated thermal shutdown feature. When the shutdown temperature is reached both channels are unconditionally switched off.

APPLICATION NOTES

Application notes for iC-HK/B are available as a separate document.

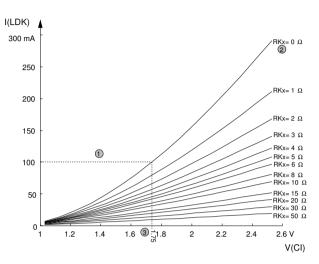


Figure 7: Diode current vs. V(CI) at Tj = $27 \degree C$

Rev G1, Page 9/10

REVISION HISTORY

Rel.	Rel. Date [†]	Chapter	Modification	Page
F2	2015-04-22	FEATURES	Combination with iC-WK/L removed	1
F2		PACKAGES	Drawings exchanged for more recent ones	1
F2		BLOCK DIAGRAM	Combination with iC-WK/L removed	1
F2		DESCRIPTION	Obsolete schematics removed	2
F2		PACKAGING INFORMATION	Drawings exchanged for more recent ones	2
		PACKAGING INFORMATION	Package Dimensions added	3, 4
F2		ELECTRICAL CHARACTERISTICS	109, 110, 111: Footnotes regarding test coverage added	6
F2		ELECTRICAL CHARACTERISTICS	Output characteristics added	8
F2		ORDERING INFORMATION	Updated order designations	10

Rel.	Rel. Date [†]	Chapter	Modification	Page
G1	2020-05-12	ELECTRICAL CHARACTERISTICS	Operating Conditions: Tj _{min} reduced to -40 °C	6
		ELECTRICAL CHARACTERISTICS	Max value added for Items 114 and 115 at Tj = -40 $^\circ\text{C}$	6

iC-Haus expressly reserves the right to change its products and/or specifications. A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev G1, Page 10/10

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-HK	SO8	Thermal Pad	iC-HK SO8-TP
iC-HK	MSOP8	Thermal Pad	iC-HK MSOP8-TP
iC-HKB	SO8	Thermal Pad	iC-HKB SO8-TP
iC-HKB	MSOP8	Thermal Pad	iC-HKB MSOP8-TP

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH	
Am Kuemmerling 18	
D-55294 Bodenheim	
GERMANY	

Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners