## iC-NZP

## P-TYPE LASER DIODE DRIVER



Rev B1, Page 1/15

#### **FEATURES**

Peak value controlled laser driver for operation from CW up to 155 MHz

Spike-free switching of laser currents of up to 300 mA

Setting of laser power (APC) via external resistor

Optional current control (ACC)

Laser current limitation

LVDS/TTL switching input with TTL monitor output

Low current consumption sleep-mode < 50 µA

Safety shutdown with overtemperature

Error signal output with overtemperature, undervoltage and overcurrent

All current LD types can be used (P/M/N configurations)

Fast soft-start

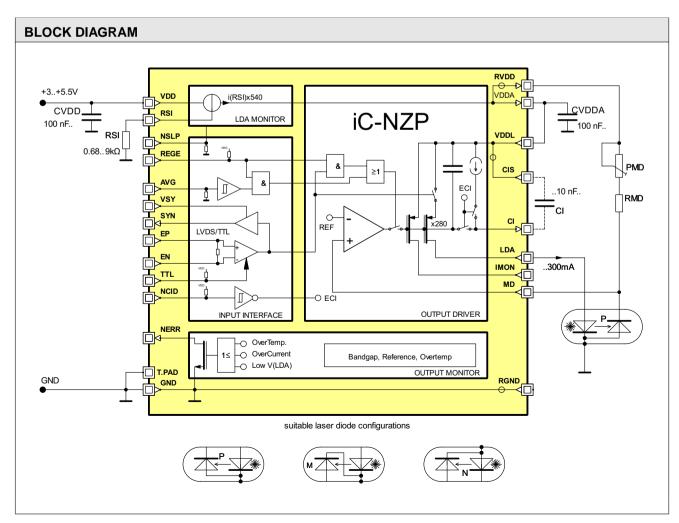
Strong suppression of transients with small external capacitors

#### **APPLICATIONS**

Pulsed and CW laser diode modules

Laser diode pointers

Laser levels


Bar-code readers

Distance measurement

#### **PACKAGES**



QFN24 4 mm x 4 mm



Copyright © 2011 iC-Haus http://www.ichaus.com

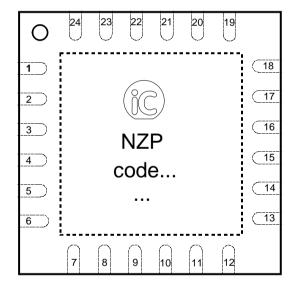
## iC-NZP

## P-TYPE LASER DIODE DRIVER



Rev B1, Page 2/15

#### DESCRIPTION


Laser diode pulse driver iC-NZP allows CW operation of laser diodes and spike-free switching with defined current pulses up to 155 MHz. The optical output power of the laser diode is set-up by means of an external resistor (RMD/PMD). For laser current control without a monitor diode, the laser current monitor at pin IMON is utilised. For high pulse frequencies the device can be switched into controlled *burst mode*. A previously settled operating point is maintained throughout the burst phase.

An averaging current monitor can be set by an external resistor at pin RSI. When the current limit is reached, overcurrent is signalled at NERR and the current from pin VCCA is limited to the pre-set value but the iC is not shut down. There is an additional current limitation in pin LDA that prevents the iC from overpowering the laser diode.

Setting pin NSLP low, the iC enters a low consumption sleep-mode ( $< 50 \,\mu\text{A}$  typ.).

#### PACKAGES QFN24 4 mm x 4 mm to JEDEC

#### **PIN CONFIGURATION**



#### **PIN FUNCTIONS**

#### No. Name Function

| 1 | VDD | Power Supply |
|---|-----|--------------|
| 2 | GND | Ground       |
| 3 | MD  | APC setup mo |

3 MD APC setup, monitor input4 IMON Laser Current Monitor

NCID Disable Pulldown Current at CI
 EP Positive LVDS/TTL switching input
 Negative LVDS switching input

8 TTL Enable TTL input

9 VSY Sync Output Supply Voltage

10 SYN Sync Output11 RGND Reference Ground

12 RVDD Reference (P-type laser diodes)

13 LDA Laser Diode Anode
14 CI Power Control Capacitor
15 CIS Power Control Capacitor sense

16 VDDL Laser Power Supply17 VDDA Analogue Power Supply18 AVG Averaging Control Enabled

19 RSI Current Monitor Setup

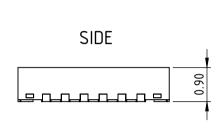
20 REGE Control Enable

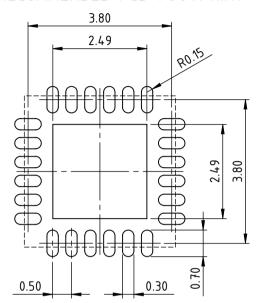
21 GND Ground

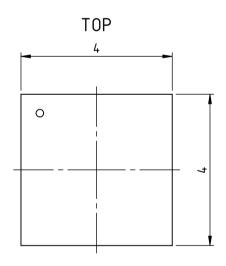
22 NSLP Not Sleep-Mode23 NERR Error Output

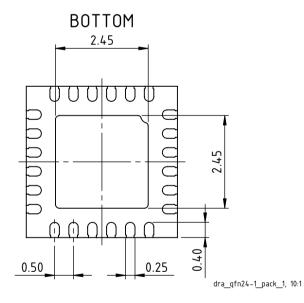
24 n/c

The Thermal Pad is to be connected to a Ground Plane (GND) on the PCB.


Only pin 1 marking on top or bottom defines the package orientation (@ NZP label and coding is subject to change).





Rev B1, Page 3/15


## **PACKAGE DIMENSIONS**

## RECOMMENDED PCB-FOOTPRINT











Rev B1, Page 4/15

## **ABSOLUTE MAXIMUM RATINGS**

Beyond these values damage may occur; device operation is not guaranteed.

| Item | Symbol  | Parameter                                                                                               | Conditions                            |       |      | Unit |
|------|---------|---------------------------------------------------------------------------------------------------------|---------------------------------------|-------|------|------|
| No.  |         |                                                                                                         |                                       | Min.  | Max. |      |
| G001 | VDD     | Voltage at VDD                                                                                          |                                       | -0.7  | 6    | V    |
| G002 | I(VDD)  | Current in VDD                                                                                          | DC current                            | -2    | 1200 | mA   |
| G003 | I(CI)   | Current in CI                                                                                           | V(LDA) = 0                            | -2    | 5    | mA   |
| G004 | I(NERR) | Current in NERR                                                                                         |                                       | -2    | 20   | mA   |
| G005 | I(MD)   | Current in MD                                                                                           |                                       | -2    | 20   | mA   |
| G006 | l()dig  | Current in EP, EN, TTL, REGE, NSLP, AVG, NCID                                                           |                                       | -2    | 20   | mA   |
| G007 | I(VDDL) | Current in VDDL                                                                                         | DC current                            | -2    | 1200 | mA   |
| G008 | I(VDDA) | Current in VDDA                                                                                         | DC current                            | -1200 | 2    | mA   |
| G009 | I(LDA)  | Current in LDA                                                                                          | DC current                            | -1200 | 2    | mA   |
| G010 | I(RSI)  | Current in RSI                                                                                          |                                       | -2    | 20   | mA   |
| G011 | I(VSY)  | Current in VSY                                                                                          |                                       | -2    | 50   | mA   |
| G012 | I(SYN)  | Current in SYN                                                                                          |                                       | -2    | 50   | mA   |
| G013 | I(IMON) | Current in IMON                                                                                         |                                       | -20   | 2    | mA   |
| G014 | V()c    | Voltage at RSI, VSY, SYN, EP, EN,<br>TTL, REGE, AVG, NCID, RGND, MD,<br>CI, IMON, RVDD, LDA, NERR, NSLP |                                       | -0.7  | 6    | V    |
| G015 | Vd()    | ESD Susceptibility at all pins                                                                          | HBM, 100 pF discharged through 1.5 kΩ |       | 4    | kV   |
| G016 | Tj      | Operating Junction Temperature                                                                          |                                       | -40   | 190  | °C   |
| G017 | Ts      | Storage Temperature Range                                                                               |                                       | -40   | 190  | °C   |

## THERMAL DATA

Operating Conditions: VDD = 3...5.5 V

| Item | Symbol | Parameter                                                       | Conditions                                                   |      |      |      | Unit |
|------|--------|-----------------------------------------------------------------|--------------------------------------------------------------|------|------|------|------|
| No.  |        |                                                                 |                                                              | Min. | Тур. | Max. |      |
| T01  | Та     | Operating Ambient Temperature Range (extended range on request) |                                                              | -20  |      | 85   | °C   |
| T02  | Rthja  |                                                                 | surface mounted, thermal pad soldered to ca. 2 cm² heat sink |      | 30   | 40   | K/W  |



Rev B1, Page 5/15

## **ELECTRICAL CHARACTERISTICS**

Operating Conditions: VDD = 3...5.5 V, VSY = 0 V...VDD,  $Tj = -40...85 ^{\circ}\text{C}$ , NSLP = hi, NCID = hi; unless otherwise stated

| Item<br>No. | Symbol       | Parameter                                                                                                                         | Conditions                                                                  | Min.         | Тур.  | Max.         | Unit     |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|-------|--------------|----------|
| Total       | Device       |                                                                                                                                   |                                                                             |              |       |              |          |
| 001         | VDD          | Permissible Supply Voltage                                                                                                        |                                                                             | 3            |       | 5.5          | V        |
| 002         | VSY          | Permissible Supply Voltage at VSY                                                                                                 | VSY ≤ VDD                                                                   | 3            |       | 5.5          | V        |
| 003         | loff(VDD)    | Supply Current in VDD                                                                                                             | NSLP = lo, all other input pins set to lo                                   |              | 5     | 50           | μΑ       |
| 004         | Idc(VDD)     | Supply Current in VDD                                                                                                             | $RSI \ge 680 \Omega$                                                        |              | 10    | 15           | mA       |
| 005         | I(VSY)       | Supply Current in VSY                                                                                                             | SYN pin open                                                                |              |       | 10           | μA       |
| 006         | Toff         | Thermal Shutdown Threshold                                                                                                        |                                                                             | 130          |       | 196          | °C       |
| 007         | VDDon        | Power-On Threshold                                                                                                                |                                                                             | 1.7          |       | 2.8          | V        |
| 800         | Vc()hi       | Clamp Voltage hi at RSI, TTL,<br>REGE, MD, CI, LDA, VDDA,<br>VDDL, NSLP, IMON, NCID, AVG                                          | I() = 0.1 mA, other pins open, VDD = 0                                      | 0.3          |       | 1.6          | V        |
| 009         | Vc(SYN)hi    | Clamp Voltage hi to VSY                                                                                                           | I() = 1 mA, other pins open, VSY = 0                                        | 0.3          |       | 1.5          | V        |
| 010         | Vc()lo       | Clamp Voltage Io at VDD, AVG,<br>MD, IMON, NCID, EP, EN, TTL,<br>VSY, SYN, RVDD, VDDL, VDDA,<br>CI, LDA, RSI, REGE, NSLP,<br>NERR | I() = -1 mA, other pins open                                                | -1.5         | -0.65 | -0.3         | V        |
| 011         | Vc(VSY)hi    | Clamp Voltage hi at VSY                                                                                                           | I() = 1 mA, other pins open, VDD = 0                                        |              |       | 6            | V        |
| Curre       | nt Monitor F | RSI, VDDA, VDDL, LDA                                                                                                              |                                                                             |              |       |              |          |
| 101         | V(RSI)       | Voltage at RSI                                                                                                                    |                                                                             | 420          | 500   | 580          | mV       |
| 102         | RSI          | Permissible Resistor at RSI                                                                                                       | VDD = 33.5 V                                                                | 2.5          |       | 9            | kΩ       |
|             |              |                                                                                                                                   | VDD = 4.55.5 V                                                              | 0.68         |       | 9            | kΩ       |
| 103         | V(VDDA)      |                                                                                                                                   | VDD – V(VDDA), V(RSI) = VDD                                                 | 400          | 500   | 620          | mV       |
| 104         | V(VDDL)      | Permissible voltage at VDDL                                                                                                       | When not connected to VDDA                                                  | 0            |       | V(VDD)       |          |
| 105         | Ierr(VDDA)   | Maximum current from VDDA without error signalling                                                                                | V(RSI) = VDD;<br>VDD = 4.55.5 V<br>VDD = 33.5 V                             | -980<br>-820 |       | -400<br>-270 | mA<br>mA |
| 106         | Cmin()       | Minimum capacitor required at VDDA                                                                                                |                                                                             | 100          |       |              | nF       |
| 107         | rIVDDA       | Current Ratio<br>I(VDDA)max/I(RSI)                                                                                                | V(VDDA) = 0 V;<br>VDD = 35.5 V                                              | 460          |       | 630          |          |
| 108         | rILDA        | Current Ratio I(LDA)max / I(RSI)                                                                                                  | V(REGE) = V(TTL) = V(EP) = VDD,<br>V(LDA) = 0 V, V(MD) = 0;<br>VDD = 35.5 V | 470          |       | 970          |          |
| 109         | i(LDA)       | Maximum limited current                                                                                                           | RSI = 680 Ω, VDD = 5.5 V                                                    | -630         |       |              | mA       |
| 110         | Rdis()       | Discharge Resistor at VDDA                                                                                                        | NSLP = Io, V(VDDA) = VDD                                                    | 1            |       | 20           | kΩ       |
| Refer       | ence         |                                                                                                                                   |                                                                             |              |       |              |          |
| 201         | V(MD)        | Reference Voltage                                                                                                                 | V(MD) – V(RGND),<br>V(RVDD) – V(MD) for P-type LD,<br>closed control loop   | 210          | 250   | 320          | mV       |
| 202         | dV(MD)       | Temperature Drift of Voltage at MD                                                                                                | closed control loop 120                                                     |              |       | μV/°C        |          |
| 203         | V(MD)        | Precharge Reference Voltage                                                                                                       | V(RVDD) - V(MD);<br>V(EP) = 0, V(AVG) = 0, P-type MD                        | 230          | 280   | 360          | mV       |
| Digita      | I Inputs/Out | puts                                                                                                                              |                                                                             |              |       |              |          |
| 301         | Vin()        | Input Voltage Range at EP, EN                                                                                                     | TTL = Io, VDD = 3.05.5 V                                                    | 0.6          |       | VDD —<br>1.4 | V        |
| 302         | Vd()         | Input Differential Voltage at EP,<br>EN                                                                                           | TTL = Io, $Vd() =  V(EP) - V(EN) $ 200                                      |              |       | mV           |          |
| 303         | R()          | Differential Input Impedance at EP, EN                                                                                            | V(EP), $V(EN) < VDD - 1.5 V$ , $TTL = Io$                                   | 0.6          |       | 3            | kΩ       |
| 304         | Vt(EP)hi     | Input Threshold Voltage hi at EP                                                                                                  | TTL = hi, EN = open                                                         |              |       | 2            | V        |
| 305         | Vt(EP)lo     | Input Threshold Voltage lo at EP                                                                                                  | TTL = hi, EN = open                                                         | 0.8          |       |              | V        |



Rev B1, Page 6/15

## **ELECTRICAL CHARACTERISTICS**

Operating Conditions: VDD = 3...5.5 V, VSY = 0 V...VDD, Tj = -40...85 °C, NSLP = hi, NCID = hi; unless otherwise stated

| Item<br>No. | Symbol     | Parameter                                                | Conditions                                                                                                                                                                 | Min.  | Тур.              | Max.            | Unit        |
|-------------|------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|-----------------|-------------|
| 306         | Vhys(EP)   | Hysteresis at EP                                         | TTL = hi, EN = open                                                                                                                                                        | 40    |                   |                 | mV          |
| 307         | lpd(EP)    | Pull-Down Current at EP                                  | TTL = hi, EN = open, V() = 1 VVDD                                                                                                                                          | 0.5   |                   | 5               | μA          |
| 308         | Vt()hi     | Input Threshold Voltage hi at TTL, REGE, NSLP, AVG, NCID |                                                                                                                                                                            |       |                   | 2               | V           |
| 309         | Vt()lo     | Input Threshold Voltage lo at TTL, REGE, NSLP, AVG, NCID |                                                                                                                                                                            | 0.8   |                   |                 | V           |
| 310         | Vhys()     | Hysteresis at TTL, REGE, NSLP, AVG, NCID                 |                                                                                                                                                                            | 130   | 230               |                 | mV          |
| 311         | lpu()      | Pull-Up Current at TTL, REGE, NCID                       | V() = 0VDD - 1.2 V                                                                                                                                                         | -60   |                   | -2              | μA          |
| 312         | lpd()      | Pull-Down Current at NSLP, AVG                           | V() = 1 VVDD                                                                                                                                                               | 2     |                   | 130             | μA          |
| 313         | Vs()hi     | Saturation voltage hi at SYN                             | Vs(SYN)hi = VSY - V(SYN), I() = -1 mA, VSY = VDD, EP = TTL = hi, EN = open                                                                                                 |       |                   | 0.4             | V           |
| 314         | Vs()lo     | Saturation voltage lo at SYN                             | I() = 1 mA, VSY = VDD, TTL = hi, EP = lo,<br>EN = open                                                                                                                     |       |                   | 0.4             | V           |
| 315         | Isc()hi    | Short-circuit Current hi at SYN                          | EP = TTL = hi, EN = open, V(SYN) = 0 V,<br>VSY = VDD                                                                                                                       | -40   |                   | -3              | mA          |
| 316         | Isc()lo    | Short-circuit Current lo at SYN                          | TTL = hi, EP = lo, EN = open, V(SYN) = VSY, VSY = VDD                                                                                                                      | 3     |                   | 40              | mA          |
| 317         | I(NERR)    | Current in NERR                                          | V(NERR) > 0.6 V, error                                                                                                                                                     | 1     |                   | 20              | mA          |
| 318         | Vs()lo     | Saturation Voltage lo at NERR                            | I() = 1 mA, error                                                                                                                                                          |       |                   | 600             | mV          |
| Laser       | Driver LDA | , CI, IMON                                               |                                                                                                                                                                            |       |                   |                 |             |
| 401         | Vs(LDA)hi  | Saturation Voltage hi at LDA                             | $Vs(LDA)hi = V(VDDL) - V(LDA); RSI = 680 \Omega$<br>I(LDA) = 300 mA, VDD = 4.55.5 V<br>I(LDA) = 100 mA, VDD = 4.55.5 V<br>$I(LDA) = 60 mA, RSI = 2.5 k\Omega VDD = 33.5 V$ |       | 1.6<br>1.2<br>0.8 | 2.2<br>2<br>1.3 | V<br>V<br>V |
| 402         | Idc(LDA)   | Permissible DC Current in LDA                            |                                                                                                                                                                            | -300  |                   |                 | mA          |
| 403         | C(CI)      | Required Capacitor at CI                                 |                                                                                                                                                                            | 0     | 10                |                 | nF          |
| 404         | I(CI)      | Charge Current from CI                                   | iC active, REGE = hi, V(VDD) - V(CI) = 1 V;<br>NCID = hi<br>NCID = lo                                                                                                      | 20    | 0                 | 60              | μA<br>μA    |
| 405         | Ipu(CI)    | Pull-Up Current in CI                                    | iC active, REGE = NCID = Io, V(RSI) = VDD,<br>V(CI) = 0 VVDD - 1 V                                                                                                         | -2.6  |                   | -0.3            | μΑ          |
| 406         | Imon()     | Current at IMON                                          | V(IMON)=0.5V;<br>I(LDA) < 100 mA, VDD = 34.5 V<br>I(LDA) < 300 mA, VDD = 4.55.5 V                                                                                          | 1/330 |                   | 1/210           | I(LDA)      |
| Timin       | g          |                                                          |                                                                                                                                                                            |       |                   |                 |             |
| 501         | twu        | Time to Wakeup:<br>NSLP lo → hi to system enable         | CVDDA = 1 $\mu$ F, RSI = 1 $k\Omega$                                                                                                                                       |       |                   | 300             | μs          |
| 502         | tr         | Laser Current Rise Time                                  | VDD = 5 V see Fig. 2                                                                                                                                                       |       |                   | 1.5             | ns          |
| 503         | tf         | Laser Current Fall Time                                  | VDD = 5 V see Fig. 2                                                                                                                                                       |       |                   | 1.5             | ns          |
| 504         | tp         | Propagation Delay V(EPx, ENx) → I(LDAx)                  | VDD = 5 V                                                                                                                                                                  |       |                   | 10              | ns          |



Rev B1, Page 7/15

## **ELECTRICAL CHARACTERISTICS: DIAGRAMS**

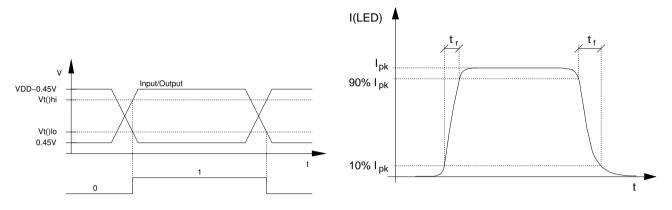



Figure 1: Reference levels

Figure 2: Laser current pulse



Rev B1, Page 8/15

#### **DESCRIPTION OF FUNCTIONS**

iC-NZP is a laser diode pulse driver, which features:

- · Averaging or peak control
- Optical power or current control
- · Laser current limitation

- Pulses of up to 155 MHz in controlled burst mode
- Sleep mode with less than 50 µA consumption
- Extension of the laser current with few external components
- · Error signalling for overcurrent

#### **OPTICAL POWER CONTROL**

The iC-NZP supports the control of the laser diode's optical output power (APC) for all common laser diode pin configurations (P, N and M). The control is enabled with pin REGE set to high. With AVG set to low, the peak power control is enabled. The laser power level is selected by means of the resistor RMON (= RMD + PMD). This control mode can be used for frequencies

up to ca. 4 Mhz. For higher frequencies the averaging control (AVG = high) or the *burst mode* have to be used.

Tables 4 and 5 show how to set the inputs for laser control depending on the input interface selected (TTL or LVDS).

| Laser control in TTL mode (TTL = high/open) |      |          |           |      |                                    |  |
|---------------------------------------------|------|----------|-----------|------|------------------------------------|--|
| EP                                          | EN   | NSLP     | REGE      | SYN  | Mode                               |  |
| -                                           | -    | low/open | -         | -    | Power-save mode                    |  |
| low/open                                    | open | high     | -         | low  | VDDA charged, laser off            |  |
| high                                        | open | high     | high/open | high | VDDA charged, laser on, regulated  |  |
| high                                        | open | high     | low       | high | VDDA charged, laser on, burst mode |  |

Table 4: Laser control in TTL mode

| Laser | Laser control in LVDS mode (TTL = low) |          |           |      |                                    |  |  |  |
|-------|----------------------------------------|----------|-----------|------|------------------------------------|--|--|--|
| EP    | EN                                     | NSLP     | REGE      | SYN  | Mode                               |  |  |  |
| -     | -                                      | low/open | -         | -    | Power-save mode                    |  |  |  |
| < EN  | > EP                                   | high     | -         | low  | VDDA charged, laser off            |  |  |  |
| > EN  | < EP                                   | high     | high/open | high | VDDA charged, laser on, regulated  |  |  |  |
| > EN  | < EP                                   | high     | low       | high | VDDA charged, laser on, burst mode |  |  |  |

Table 5: Laser control in LVDS mode

#### **RMON dimensioning**

Peak control (AVG = low): In order to calculate the right value of RMON, the value of IM (monitor current with respect to optical output power) of the laser diode must be known. RMON must be chosen in a way that the monitor current generated by the desired output power

creates a voltage drop across RMON of 250 mV (cf. Electrical Characteristics No. 201).

Averaging control (AVG = high): In this mode the calculation is the same as in peak control, only the result has to be divided by the duty cycle of the laser pulses,  $D = \frac{\tau}{T}$ . At a duty cycle of e.g. 50%  $D = \frac{1}{2}$ .



Rev B1, Page 9/15

| Control modes |                   |                                    |  |  |  |  |
|---------------|-------------------|------------------------------------|--|--|--|--|
| Averaging     | Operation mode    | RMON calculation                   |  |  |  |  |
| AVG = 0       | Peak control      | $RMON = \frac{V(MD)}{IM}$          |  |  |  |  |
| AVG = 1       | Averaging control | $RMON = \frac{V(MD)}{IM \times D}$ |  |  |  |  |

Table 6: RMON dimensioning

#### **Example**

By way of example, an output level of 1 mW is to be set. With an optical power of 1 mW e.g. laser diode HL6342G has a typical monitor current (IM) of 15  $\mu$ A. The following value is then obtained for the resistor at pin MD (RMON = PMD + RMD, where RMD is a fixed resistor and PMD a potentiometer.):

$$RMON = \frac{V(MD)}{IM} = \frac{0.25 V}{15 \mu A} = 16.67 k\Omega$$

#### **External capacitor mode**

In applications where an external capacitor is required (see *best performance recommendations* below), the external capacitor mode must be enabled (pin NCID = low).

#### Best performance recommendations

The operating point for the laser diode is stored in an on-chip capacitor. This permits a fast start-up but can lead to an unstable control circuit under certain conditions such as inadequate PCB layout or laser with very low monitor current. In that cases, an external capacitor is to be connected as close as possible to the chip, across pin CI and CIS. This will prevent instability of the control circuit. For averaging control a 10 nF capacitor at CI is recommended. Special care must be taken in PCB layout when laying out the path from the laser diode's cathode to GND. This path must be kept as short as possible to avoid parasitic inductances. A snubber network across the laser diode also helps to compensate for these parasitic inductances.

Figures 3, 4 and 5 show the typical set-up for the different P, N and M-type diode configurations.

#### P-Type diodes

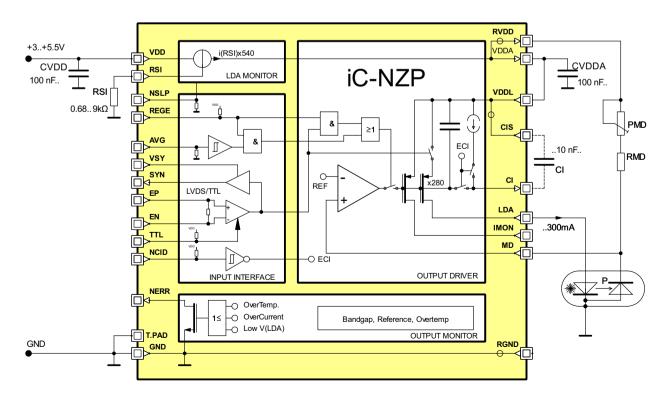



Figure 3: Circuit example for P-type laser diodes (case grounded)



Rev B1, Page 10/15

## M-Type diodes

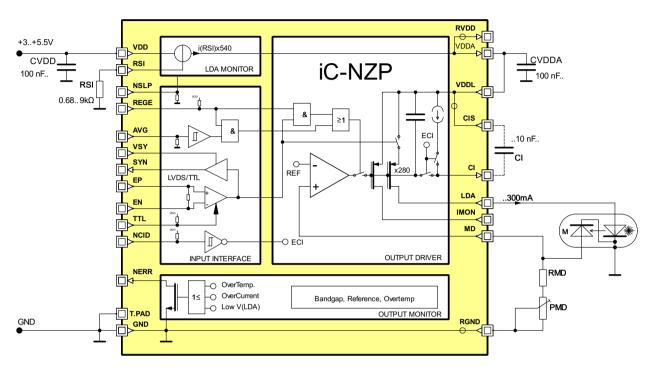



Figure 4: Circuit example for M-type laser diodes (case grounded)

## N-Type diodes

Although this type of laser diodes are supported by iC-NZP, it's strongly recommended to use iC-NZN instead, since in this configuration all the pulses at LDA

will be coupled directly to pin MD due to monitor photo diode's internal capacitance. Thus making an accurate control much more difficult.

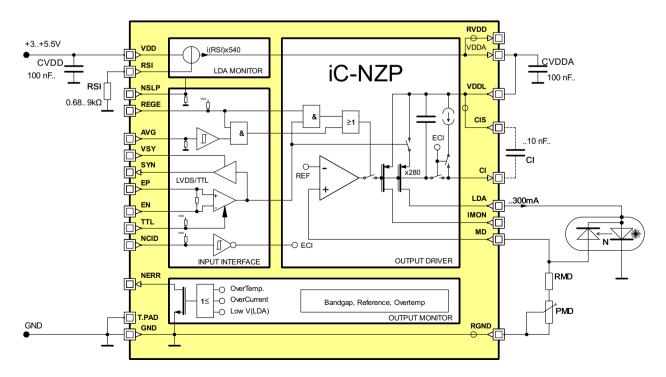



Figure 5: Circuit example for N-type laser diodes

## iC-NZP

## P-TYPE LASER DIODE DRIVER



Rev B1, Page 11/15

#### LASER CURRENT LIMITATION

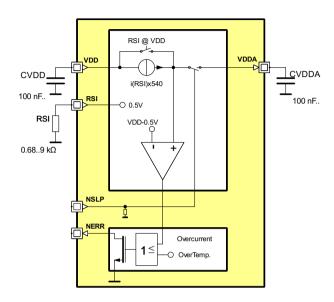



Figure 6: iC-NZP VDDA current limitation

iC-NZP monitors the average laser current flowing from pin VDDA (Figure 6). The DC current limit is set by means of a resistor at pin RSI.

When dimensioning resistor RSI the following applies (cf. Electrical Characteristics No. 107):

$$I_{max}(VDDA) = 540 \times \frac{0.5 \text{ V}}{RSI}$$

If no current limitation is required, pin RSI must be connected to VDD to disable this feature.

Short pulses at VDDA with higher currents are possible as only the DC current is monitored and capacitor CVDDA supplies the current for short pulses.

#### **BURST MODE**

In *controlled burst mode* iC-NZP can pulse with up to 155 MHz. *Controlled* here means that a pre-set operating point is maintained during the *burst phase*.

Therefore an operating point is settled first, for which pin REGE has to be high and the laser must be switched on. Once the operating point has been reached the laser can be switched off again. The operating point is stored in an on-chip capacitor and when REGE is set to low, the *burst mode* is activated. The

pre-set operating point is maintained. To prevent the laser current from rising due to residual currents, the capacitor is discharged with a maximum of 150 nA (cf. Electrical Characteristics No. 405). For a longer burst mode, an external capacitor can be connected to pin CI. As the capacitor is discharged gradually, the output level must be re-settled again after a certain period, depending on the admissible degradation of the laser output power.

#### **CURRENT CONTROL**

The iC-NZP also supports laser current control, when no monitor diode is present. For that purpose, a fraction of the current flowing trough the laser is provided at IMON pin (ILDA / 280, cf. Electrical Characteristics No. 406). The laser current is set by means of resistor RMON (= RMD + PMD).

$$RMON = \frac{V(MD)}{IMON}$$

Figure 7 shows the typical set-up for current control.

#### **External capacitor mode**

In applications where an external capacitor is required (see *best performance recommendations* below), the

external capacitor mode must be enabled (NCID pin set to low).

#### Best performance recommendations

The operating point for the laser diode is stored in an on-chip capacitor. This permits a fast start-up but can lead to an unstable control circuit under certain conditions such as inadequate PCB layout or laser with very low monitor current. In that cases, an external capacitor is to be connected as close as possible to the chip, across pin CI and CIS. This will prevent instability of the control circuit.

Setting AVG to hi, keeps the control loop always on and settled, thus improving the dynamic performance.



Rev B1, Page 12/15

Special care must be taken in PCB layout when laying out the path from the laser diode's cathode to GND. This path must be kept as short as possible to avoid parasitic inductances. A *snubber network* across the laser diode also helps to compensate for these parasitic inductances.

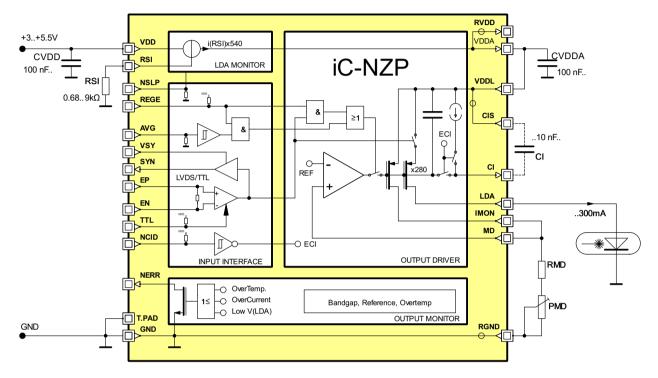



Figure 7: Example set-up for current control

#### **SLEEP MODE**

The iC-NZP has a very low consuption mode that permits hibernation in battery powered applications. Setting the NSLP pin to low drives the chip into a state

where the VDDA pin is disconnected as supply and pulled down. The wake up from sleep time is about  $300\,\mu s$ 



Rev B1, Page 13/15

## **EVALUATION BOARD**

iC-NZP comes with an evaluation board for test purpose. Figures 8 and 9 show both the schematic and the component side of the evaluation board.

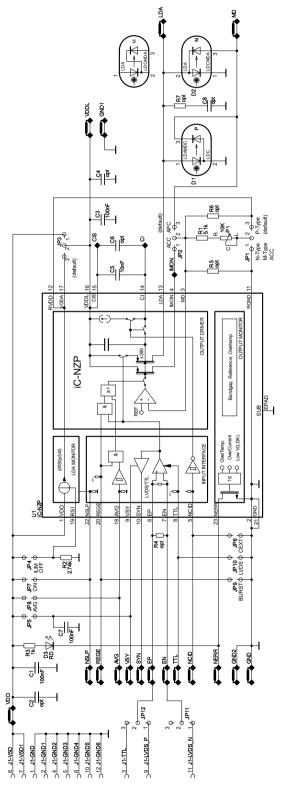



Figure 8: Schematic of the evaluation board



Rev B1, Page 14/15

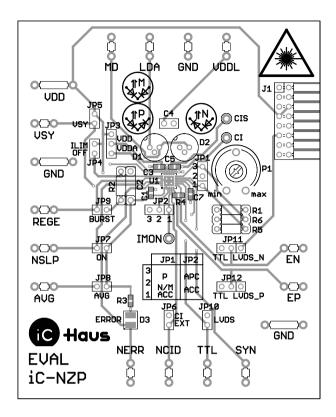



Figure 9: Evaluation board (component side)

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website <a href="https://www.ichaus.de/infoletter">www.ichaus.de/infoletter</a>; this letter is generated automatically and shall be sent to registered users by email

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.



Rev B1, Page 15/15

## **ORDERING INFORMATION**

| Туре   | Package | Order Designation                 |
|--------|---------|-----------------------------------|
| iC-NZP |         | iC-NZP QFN24<br>iC-NZP EVAL NZP1D |

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales\_partners