

Rev B1, Page 1/15

FEATURES APPLICATIONS ♦ 8-fold level shift up to 40 V output voltage Operation of N-FETs from 1.8 V, 2.5 V, 3.3 V or 5 V systems Inputs compatible with TTL and CMOS levels, 40 V voltage proof ♦ Level shift configurable to 5 V, 10 V or supply voltage Short-circuit-proof push-pull current sources for driving FETs slowly Safe low output state with single errors Ground and supply voltage monitor • Status output for error and system diagnostics ♦ Temperature range from -40 to 125 °C ♦ Protective ESD circuitry PACKAGES QFN24 4 mm x 4 mm **BLOCK DIAGRAM**

DESCRIPTION

iC-MFN is a monolithically integrated, 8-channel level adjustment device which drives N-channel FETs. The internal circuit blocks have been designed in such a way that with single errors, such as open pins (VB, VBR, GND, GNDR) or the short-circuiting of two outputs, iC-MFN's output stages switch to a predefined, safe low state. Externally connected N-channel FET are thus shut down safely in the event of a single error.

The inputs of the eight channels consist of a Schmitt trigger with a pull-down current source and are compatible with TTL and CMOS levels and are volt-age-proof up to 40 V. The eight channels have a current-limited push-pull output stage and a pull-down resistor at the output. The hi-level at one of the inputs EN5, EN10 or ENFS defines the output hi-level and enables the outputs. The output hi-level is disabled with the lo-level at all inputs EN5, EN10 and ENFS or with the hi-level at more than one input.

iC-MFN monitors the supply voltage at VB and VBR pin and the voltages at the two ground pins GND and GNDR. Both power supply pins VB and VBR and both pins GND and GNDR must be connected together externally in order to guarantee the safe low state of the output stages in the event of error.

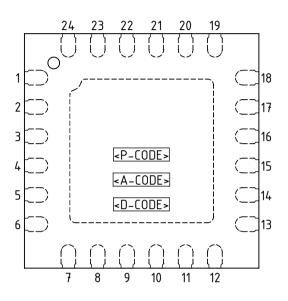
Should the supply voltage at VB undershoot a predefined threshold, the voltage monitor causes the outputs to be actively tied to GND via the low side transistors. If the ground potential ceases to be applied to GND, the outputs are tied to GNDR by pull-down resistors.

If the connection between the ground potential and the GND pin is disrupted, the high side and low side transistors of the output stages are shut down and the outputs tied to GNDR via the pull-down resistors. If on the other hand the connection between ground potential and the GNDR pin is disrupted, only the output stage high side transistors are shut down; the outputs are then actively tied to GND via the low side transistors.

Pull-down currents provide the safe lo-level at open inputs IN1...8, EN5, EN10 and ENFS. The pull-down currents have two stages in order to minimize power dissipation with enhanced noise immunity.

The status of the device is indicated with the Open-Drain pin NOK and can be used for system diagnostics.

Temperature monitoring protects the device from too high power dissipation.


The device is protected against destruction by ESD.

Rev B1, Page 3/15

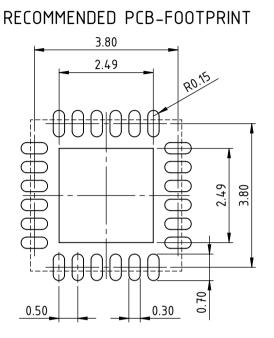
PACKAGING INFORMATION

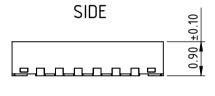
PIN CONFIGURATION QFN24-4x4 (topview)

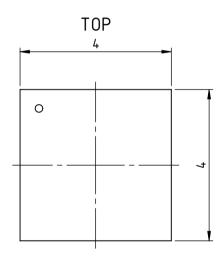
PIN FUNCTIONS No. Name Function

	Nume	1 dilotion
1 2	OUT1 VB	Output channel 1 Supply Voltage
3	VBR	Supply Voltage (R)
	EN5	Enable input hi-level = 5V
	EN10	Enable input hi-level = 10V
-	IN1	Input channel 1
7	IN2	Input channel 2
-	IN3	Input channel 3
-	IN4	Input channel 4
10	IN5	Input channel 5
11	IN6	Input channel 6
12	IN7	Input channel 7
	IN8	Input channel 8
	NOK	Output inverted status
15	ENFS	Enable input full scale hi-level = VB
-	GNDR	Ground (R)
	GND	Ground
	OUT8	Output channel 8
19	OUT7	Output channel 7
20	OUT6	Output channel 6
21		Output channel 5
	OUT4	Output channel 4
23	OUT3	Output channel 3
24	OUT2	Output channel 2
	TP	Backside Paddle

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes), <D-CODE> = date code (subject to changes);


The Backside Paddle is to be connected to a ground plane on the PCB. Connections between GND, GNDR and the ground plane should be concidered with system FMEA aspects.




Rev B1, Page 4/15

PACKAGE DIMENSIONS

All dimensions given in mm.

BOTTOM 2.45 ()τ τ Ο τ \supset \supset \supset 2.45 7 \supset $\phi \phi \phi \phi$ \cap 0.4.0 0.25 0.50

All dimensions given in mm. Tolerances of form and position according to JEDEC MO-220.

drb_qfn24-4x4-1_pack_1, 10:1

Rev B1, Page 5/15

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
G001	VB, VBR	Supply Voltage		-0.3	40	V
G002	V()	Voltage at OUT18, NOK		-0.3	40	V
G003	V()	Voltage at IN18, EN5, EN10, ENFS		-0.3	40	V
G004	V(GNDR)	Voltage at GNDR referenced to GND		-0.3	0.3	V
G005	V(GND)	Voltage at GND referenced to GNDR		-0.3	0.3	V
G006	V(VBR)	Voltage at VBR referenced to VB		-0.3	0.3	V
G007	V(VB)	Voltage at VB referenced to VBR		-0.3	0.3	V
G008	lmx()	Current in OUT18, NOK, IN18, EN5, EN10, ENFS		-10	10	mA
G009	lmx()	Current in VB, VBR		-10	80	mA
G010	lmx()	Current in GND, GNDR		-80	10	mA
G011	Vd()	ESD susceptibility at all pins	HBM 100 pF discharged through $1.5 k\Omega$		2	kV
G012	Tj	Operating Junction Temperature		-40	140	°C
G013	Ts	Storage Temperature Range		-55	125	°C

THERMAL DATA

Operating Conditions: VB = VBR = 4.5...40 V, GND = GNDR = 0 V

Item	Symbol	Parameter	Conditions				Unit
No.	-			Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-40		125	°C
T02	Rthja	Thermal Resistance Chip/Ambient	SMD assembly, no additional cooling areas.			75	K/W

Rev B1, Page 6/15

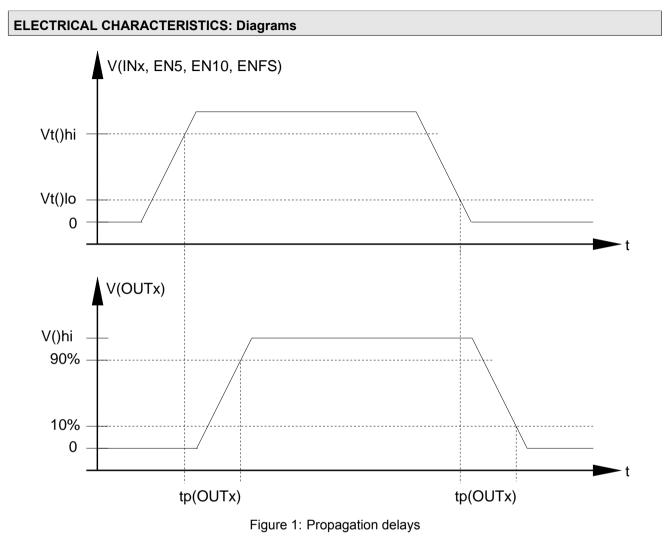
ELECTRICAL CHARACTERISTICS

tem No.	Symbol	Parameter	Conditions	Tj ℃	Fig.	Min.	Тур.	Max.	Unit
Total	Device				<u> </u>				<u> </u>
001	VB	Permissible Supply Voltage				4.5		40	V
002	I(VB)	Supply Current in VB	No load, EN5 = lo,EN10 = lo, ENFS = lo			1.2		3.6	mA
003	I(VB)	Supply Current in VB	No load, EN5 = hi,EN10 = lo, ENFS = lo, IN1 8 = hi, VB = 8 40 V			3.2		6.6	mA
004	I(VB)	Supply Current in VB	No load, EN5 = lo, EN10 = hi, ENFS = lo, IN1… 8 = hi, VB = 13… 40 V			3.2		6.8	mA
005	I(VB)	Supply Current in VB	No load, EN5 = lo, EN10 = lo, ENFS = hi, IN1…8 = hi, VB = 4.5…40 V			1.3		6.6	mA
006	I(VBR)	Supply Current in VBR						7	mA
007	I(GND)	Current in GND	No load			-7			mA
008	I(GNDR)	Current in GNDR	No load, all OUTx = hi			-7			mA
Curre	nt Driver OU	JT18	·						
103	Vs(OUTx)hi	Saturation Voltage hi referenced to VB	Vs()hi = VB – V(), INx = hi, ENFS = hi; I() = -0.5 mA I() = -2 mA					0.2 0.8	VV
104	Vs(OUTx)lo	Saturation Voltage lo referenced to GND	I() = 0.5 mA I() = 2 mA					0.2 0.8	V V
105	Vr(OUTx)	Output Voltage regulated, no load	EN5 = hi, INx = hi, I() = 0 mA, VB > 7 V			4.65	5	5.35	v
106	Vr(OUTx)	Output Voltage regulated, no load	EN10 = hi, INx = hi, I() = 0 mA, VB > 12 V			9.3	10	10.7	v
107	Ri(OUTx)	Output Resistance	EN10 = hi or EN5 = hi, INx = hi, I() = $\pm 2 \text{ mA}$			100		700	Ω
108	VI(OUTx)	Output Voltage	$I(OUTx) = 2 \mu A$, GND open					600	mV
109	Ipd(OUTx)	Pull-Down Current	V(OUTx) = 1 V, GND open			30		120	μA
110	Rpd(OUTx)	Pull-Down Resistor at OUTx referenced to GNDR	VB, VBR, V(OUTX) = 10 V, GND open			50		300	kΩ
111	Rpd(OUTx)	Pull-Down Resistor at OUTx referenced to GNDR	VB, VBR, V(OUTX) = 40 V, GND open			100		600	kΩ
112		Short circuit current lo	V()= 0.8 VVB			2	3.6	10	mA
		Short circuit current hi	V() = 0VB – 0.8 V			-10	-3	-2	mA
114	Vsh(OUTx)	Output Voltage at short circuit of two outputs	EN5 = hi, At two different input signals hi and lo					1	V
115		Output Voltage at short circuit of two outputs	EN10 = hi or ENFS = hi, At two different input signals hi and lo					1.3	V
116	Vt(OUTx)hi	Threshold Voltage hi monitoring comparator	Vt() = Vr() - V() or Vt() = VB - V()			0.8			V
117	. ,	Threshold Voltage lo monitoring comparator	Vt() = Vr() - V() or Vt() = VB - V()					2.2	V
118	Vt()hys	Hysteresis	Vt()hys = Vt()lo – Vt()hi			50		300	mV

Rev B1, Page 7/15

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Tj ℃	Fig.	Min.	Тур.	Max.	Unit
Input	IN18, EN5	, EN10, ENFS			<u> </u>				
203	Vt()hi	Threshold Voltage hi				1.15		1.4	V
204	Vt()lo	Threshold Voltage lo				0.8		1.05	V
205	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi – Vt()lo			200		400	mV
206	lpd1()	Pull-Down Current 1	0.4 V < V() < Vt()hi		5	75	225	350	μA
207	Ipd2()	Pull-Down Current 2	V() > 1.4 V		5	20	45	70	μA
208	Cin()	Input Capacitance						20	pF
209	Rpd()	Pull-Down Resistor	VB, VBR open			10		150	kΩ
Suppl	y and Temp	erature Monitor	· · · ·						
301	VBon	Turn-On Threshold VB				3.8		4.45	V
302	VBoff	Turn-Off Threshold VB	Decreasing voltage VB			3.4		4.2	V
303	VBhys	Hysteresis	VBhys = VBon – VBoff			200			mV
304	Toff	Turn-Off Temperature	Increasing temperature			145	160	180	°C
305	Ton	Turn-On temperature	Decreasing temperature			130	147	170	°C
306	Thys	Hysteresis	Thys = Toff – Ton				13		°C
Groun	d Monitor C	SND, GNDR	· · · · ·						
401	Vt()hi	Threshold Voltage hi GND Moni- tor	Referenced to GNDR					270	mV
402	Vt()lo	Threshold Voltage lo GND Moni- tor	Referenced to GNDR			50			mV
403	Vt()hys	Hysteresis	Vt()hys = Vt()hi – Vt()lo			5		100	mV
404	Vt()hi	Threshold Voltage hi GNDR Monitor	Referenced to GND					270	mV
405	Vt()lo	Threshold Voltage lo GNDR Monitor	Referenced to GND			50			mV
406	Vt()hys	Hysteresis	Vt()hys = Vt()hi – Vt()lo			5		100	mV
407	Vc()hi	Clamp Voltage GNDR hi refer- enced to GND	I() = 1 mA			0.4		2	V
408	Vc()lo	Clamp Voltage GNDR lo refer- enced to GND	I() = -1 mA			-2		-0.4	V
Status	Output NO	ĸ							
503	II(NOK)	Leakage Current	GND < V(NOK) < VB			-20		20	μA
504	Vs(NOK)lo	Saturation Voltage lo referenced to GND	I() = 0.5 mA I() = 2 mA					0.2 0.8	V V
505	Isc(NOK)lo	Short circuit current lo	V()= 0.8 VVB			2	3	10	mA
Suppl	y Monitor V	B, VBR	l						
601	Vt(VB)hi	Threshold Voltage hi VB Monitor	Referenced to VBR					270	mV
602	Vt(VB)lo	Threshold Voltage Io VB Monitor	Referenced to VBR			50			mV
603	Vt(VB)hys	Hysteresis	Vt()hys = Vt()hi – Vt()lo			5		100	mV
604	Vt(VBR)hi	Threshold Voltage hi VBR Moni- tor	Referenced to VB					270	mV
605	Vt(VBR)lo	Threshold Voltage lo VBR Moni- tor	Referenced to VB			50			
606	Vt(VBR)hys		Vt()hys = Vt()hi – Vt()lo			5	l	100	mV
607		Clamp Voltage hi	I() = 1 mA, Vc() = V(VBR) - V(VB)			0.4		2	V
608	Vc(VBR)lo	Clamp Voltage lo	I() = -1 mA, Vc() = V(VBR) - V(VB)			-2		-0.4	V


Rev B1, Page 8/15

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Tj ℃	Fig.	Min.	Тур.	Max.	Unit
Timin	g								H
901	tp(OUTx)	Propagation delay INx, EN5 \rightarrow OUTx	$\begin{array}{l} (\{INx,EN5\}lo\rightarrow hi)\rightarrow90\ \%OUTx\\ (\{INx,EN5\}hi\rightarrow lo)\rightarrow10\ \%OUTx\\ CLoad()=100\ pF \end{array}$		1	0.45		1.1	μs
902	tp(OUTx)	Propagation delay INx, EN5 \rightarrow OUTx	$\begin{array}{l} (\{INx,EN5\}lo\rightarrow hi)\rightarrow90\ \%OUTx\\ (\{INx,EN5\}hi\rightarrow lo)\rightarrow10\ \%OUTx\\ CLoad()=1\ nF \end{array}$		1	1.3		2.4	μs
903	tp(OUTx)	Propagation delay INx, EN5 \rightarrow OUTx	$\begin{array}{l} (\{INx,EN5\}lo\rightarrow hi)\rightarrow 90\ \%OUTx\\ (\{INx,EN5\}hi\rightarrow lo)\rightarrow 10\ \%OUTx\\ CLoad()=2\ nF \end{array}$		1	2.2		3.7	μs
904	tp(OUTx)	Propagation delay INx, EN5 \rightarrow OUTx	$\begin{array}{l} (\{INx,EN5\}lo\rightarrow hi)\rightarrow 90\ \%OUTx\\ (\{INx,EN5\}hi\rightarrow lo)\rightarrow 10\ \%OUTx\\ CLoad()=5\ nF \end{array}$		1	5		8.1	μs
905	tp(OUTx)	Propagation delay INx, EN10 \rightarrow OUTx	$\begin{array}{l} (\{INx,EN10\}lo\rightarrow hi)\rightarrow 90\ \%OUTx\\ (\{INx,EN10\}hi\rightarrow lo)\rightarrow 10\ \%OUTx\\ CLoad()=100\ pF \end{array}$		1	0.7		1.6	μs
906	tp(OUTx)	Propagation delay INx, EN10 \rightarrow OUTx	$\begin{array}{l} (\{INx,EN10\}lo\rightarrow hi)\rightarrow 90\ \%OUTx\\ (\{INx,EN10\}hi\rightarrow lo)\rightarrow 10\ \%OUTx\\ CLoad()=1\ nF \end{array}$		1	2.3		4.1	μs
907	tp(OUTx)	Propagation delay INx, EN10 \rightarrow OUTx	$\begin{array}{l} (\{INx,EN10\}lo\rightarrow hi)\rightarrow90\ \%OUTx\\ (\{INx,EN10\}hi\rightarrow lo)\rightarrow10\ \%OUTx\\ CLoad()=2\ nF \end{array}$		1	3.9		7.1	μs
908	tp(OUTx)	Propagation delay INx, EN10 \rightarrow OUTx	$\begin{array}{l} (\{INx,EN10\}lo\rightarrow hi)\rightarrow90\ \%OUTx\\ (\{INx,EN10\}hi\rightarrow lo)\rightarrow10\ \%OUTx\\ CLoad()=5\ nF \end{array}$		1	9		16	μs
909	tp(OUTx)	Propagation delay INx, ENFS \rightarrow OUTx	$\begin{array}{l} (\{INx,ENFS\}lo \rightarrow hi) \rightarrow 90 \ \%OUTx \\ (\{INx,ENFS\}hi \rightarrow lo) \rightarrow 10 \ \%OUTx \\ CLoad() = 100 \ pF \end{array}$		1	1.4		3.1	μs
910	tp(OUTx)	Propagation delay INx, ENFS \rightarrow OUTx	$\begin{array}{l} (\{INx,ENFS\}lo \rightarrow hi) \rightarrow 90 \ \%OUTx \\ (\{INx,ENFS\}hi \rightarrow lo) \rightarrow 10 \ \%OUTx \\ CLoad() = 1 \ nF \end{array}$		1	5.2		9.8	μs
911	tp(OUTx)	Propagation delay INx, ENFS \rightarrow OUTx	$\begin{array}{l} (\{INx,ENFS\}lo \rightarrow hi) \rightarrow 90 \ \%OUTx \\ (\{INx,ENFS\}hi \rightarrow lo) \rightarrow 10 \ \%OUTx \\ CLoad() = 2 \ nF \end{array}$		1	9.2		16.7	μs
912	tp(OUTx)	Propagation delay INx, ENFS \rightarrow OUTx	$\begin{array}{l} (\{INx,ENFS\}lo \rightarrow hi) \rightarrow 90\ \%OUTx\\ (\{INx,ENFS\}hi \rightarrow lo) \rightarrow 10\ \%OUTx\\ CLoad()=5\ nF \end{array}$		1	20		35	μs
913	dV()/dt	Slew rate	VB = 24 V, CLoad() = 100 pF			7		18	V/µs
914	dV()/dt	Slew rate	VB = 24 V, CLoad() = 1 nF			2.2		4.5	V/µs
915	dV()/dt	Slew rate	VB = 24 V, CLoad() = 2 nF			1.2		2.5	V/µs
916	dV()/dt	Slew rate	VB = 24 V, CLoad() = 5 nF			0.5		1.2	V/µs

Rev B1, Page 9/15

Rev B1, Page 10/15

DESCRIPTION OF FUNCTIONS

Hi-level output configuration

The device iC-MFN has three adjustable hi-levels for driving N-channel FETs. The configured hi-level is common to all outputs OUTx and the maximum level is the power supply VB potential. The hi-level configuration inputs are used simultaneous for enabling the hi-level at the outputs OUTx. The hi-level at exactly one input EN5, EN10 or ENFS configure the voltage of hi-level and enable the outputs. If more than one of these inputs have hi-level the outputs remains disabled. The hi-level 5 V (configured with EN5 = hi) and 10 V (configured with EN10 = hi) are internally generated by a voltage reference and regulated. The hi-level VB (configured with ENFS = hi) is an unregulated connection to VB. In this case the voltage swing depends directly from the power supply VB.

Output characteristics of the high side transistor

The high side output transistors at the eight channels demonstrate a resistive behavior with low voltage (VB – V(OUTx)) and behave as a current source with finite output resistance with higher voltages.

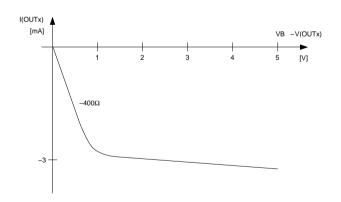
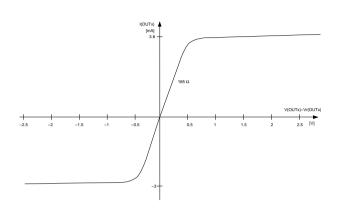



Figure 2: Output characteristic of the high side transistor at OUTx

Output characteristic of the regulated push-pul-I-output at OUTx

The hi-level 5 V and 10 V is generated with a regulated push-pull output and demonstrate a resistive behavior with low voltage changes and behave as a current source with finite output resistance with higher voltage changes.

Figure 3: Output characteristic of the regulated push-pull-output at OUTx

Output characteristic of the low side transistor

The low side output transistors at the eight channels demonstrate a resistive behavior with low voltage V(OUTx) and behave as a current sink with finite output resistance with higher voltages.

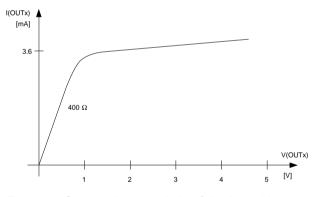


Figure 4: Output characteristic of the low side transistor at OUTx

Status output NOK

The status output NOK is a current limited 40 V proof open-drain output. The output transistor is switched on if the hi-level of the outputs OUTx are enabled with exactly one pin ENx, the outputs have reached the voltage levels defined by the inputs INx, the power supply voltage is above the power-on threshold, the temperature is below the switch off temperature and all power supply pins are connected.

Pull-down currents

In order to enhance noise immunity with limited power dissipation at inputs INx, EN5, EN10 and ENFS the pull-down currents at these pins have two stages. With a rise in voltage at input pins INx, EN5, EN10 and ENFS the pull-down current remains high until Vt()hi (Electrical Characteristics No. 203); above this threshold the device switches to a lower pull-down current. If the voltage falls below Vt()lo (Electrical Characteristics No. 204), the device switches back to a higher pull-down current.

DETECTING SINGLE ERRORS

If single errors are detected, safety-relevant applications require externally connected switching transistors to be specifically shut down. Single errors can occur when a pin is open (due to a disconnected bonding wire or a bad solder connection, for example) or when two pins are short-circuited.

When two output of different logic levels are short-circuited, the driving capability of the low side driver will predominate, keeping the connected N-channel FETs in a safe shutdown state.

With open pins VB, VBR, GND or GNDR iC-MFN switches the output stages to a safe, predefined low state via pull-down resistors and current sources at the outputs, subsequently shutting down any externally connected N-channel FETs.

Loss of VB potential

If power supply potential is no longer applied to the VB-pin, the output stage high side drivers are shut down and the outputs actively tied to GND via the low side drivers.

Loss of VBR potential

If power supply potential is no longer applied to the VBR-pin, the output stage high side drivers are shut down and the outputs actively tied to GND via the low side drivers.

Loss of GNDR potential

If ground potential is no longer applied to the GNDR-pin, the output stage high side drivers are shut down and the outputs actively tied to GND via the low side drivers.

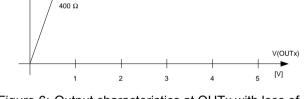


Figure 6: Output characteristics at OUTx with loss of VB, VBR or GNDR

Loss of GND potential

I(OUTx)

[mA]

3.6

If ground potential is not longer applied to GND, the output stages are shut down and the outputs tied to GNDR via current sources and internal pull-down resistors with a typical value of $200 \text{ k}\Omega$.

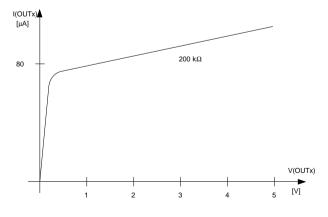


Figure 7: Output characteristics at OUTx with loss of GND

Rev B1, Page 11/15

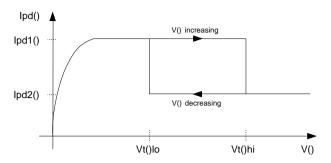


Figure 5: Pull-down currents at INx, EN5, EN10 and ENFS

Rev B1, Page 12/15

APPLICATION NOTES

Driving an N-channel MOSFET

One typical field of application for iC-MFN is in the operation of N-FETs with microprocessor output signals, as shown in Figure 8.

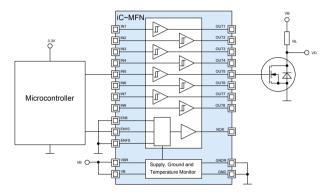


Figure 8: Driving an N-channel MOSFET

Slowly switching of a transistor is done with a current limited driver. Figure 9 shows the different phases of a turn on process with resistive load. In Section t0 to t1 the gate of the transistors is loaded to the threshold voltage Vth(FET) and is a dead time. In section t1 to t2 the gate voltage keeps nearly constant (miller-plateau) during the drain voltage slope. The slew rate depends on the current of the driver and the gate-drain capacitor of the transistor. In section t2 to t3 the gate voltage reach the static value. The transistor thus goes low ohmic and minimizes the power dissipation. The equations 1 to 4 are simplified and give an estimation of the timing on the basis of data from the specifications of the device iC-MFN and the used transistor. The turn off looks similar to the turn on but with reverse run trough.

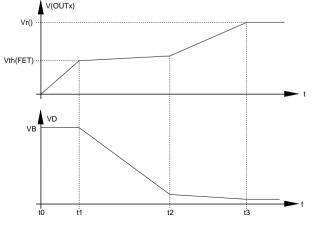


Figure 9: On switching of a transistor

$$t_{t0..t1}[\mu s] = C_{iss} @(V_{ds} = hi) \times \frac{V_{th}(FET)}{-Isc(OUTx)hi}$$
(1)

$$t_{t1..t2}[\mu s] = C_{rss} @(V_{ds} = hi) \times \frac{VB}{-Isc(OUTx)hi}$$
(2)

$$t_{t2..t3}[\mu s] = C_{iss} \textcircled{0}(V_{ds} = lo) \times \frac{Vr(OUTx) - V_{th}(FET)}{-Isc(OUTx)hi}$$
(3)

$$t_{on} = t_{t0..t1} + t_{t1..t2} + t_{t2..t3}$$
(4)

 C_{iss} = C_{gs} + C_{gd} = voltage dependent gate-source and gate-drain capacitor [nF]

 $C_{\rm rss}$ = C_{gd} = voltage dependent gate-drain capacitor [nF]

Isc(OUTx)lo = short circuit current lo at OUTx [mA]

$$t_{t0..t1}$$
 = dead time [µs]

 $t_{t1..t2}$ = slope time at drain (Miller-Plateau) [µs]

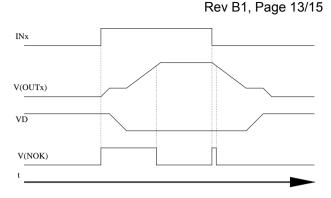
 $t_{t2..t3}$ = time to reach static gate voltage [µs]

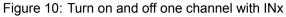
 t_{on} = overall turn on time [µs]

VB = power supply VB [V]

 $Vr(OUT_x)$ = configured static turn on voltage at OUTx [V]

$$V_{th}(FET)$$
 = threshold of the transistor [V]


Example


Turn on calculation with following estimations: C_{iss} @ $(V_{ds} = 24 V) = 1.5 nF$ C_{iss} @ $(V_{ds} = 1 V) = 3 nF$ C_{rss} @ $(V_{ds} = 24 V) = 0.3 nF$ Isc(OUTx)hi = -4 mA VB = 24 V Vr(OUTx) = 10 V $V_{th}(FET) = 3 V$

From this follows: $t_{t0..t1} = 1.13 \,\mu s$ $t_{t1..t2} = 1.8 \,\mu s$ $t_{t2..t3} = 5.25 \,\mu s$ $t_{on} = 8.18 \,\mu s$

The slew rate at the drain of transistor is: $13.3 V/\mu s$

Figure 10 shows the turn on and off at one channel with pin INx. The pulse duration at pin NOK, especially at turn on, can be used for monitoring the connected transistor and the load.

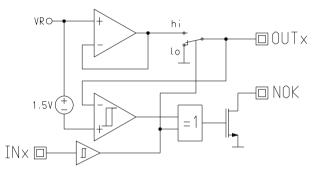


Figure 11: Circuit diagram one channel with monitoring comparator

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A1	2006-07-19		Initial Release	

Rel.	Rel. Date*	Chapter	Modification	Page
A2	2007-06-25	ELECTRICAL CHARACTERISTICS	Changes A1 A2	4

Rel.	Rel. Date*	Chapter	Modification	Page
B1	2018-07-06	ELECTRICAL CHARACTERISTICS	Items 101, 102, 201, 202, 407, 408, 501, 502, 607, 608 removed due to exceeding the ABSOLUTE MAXIMUM RATINGS	5, 6
		ELECTRICAL CHARACTERISTICS	Items 006, 008, 105, 106, 107, 209, 301, 302 updated	5, 6
		ELECTRICAL CHARACTERISTICS	Test mode removed	6
		REVISION HISTORY	Chapter added	12

* Release Date format: YYYY-MM-DD

Rev B1, Page 14/15

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev B1, Page 15/15

ORDERING INFORMATION

Туре	Package	Order Designation
iC-MFN	QFN24 4 mm x 4 mm	iC-MFN QFN24
Evaluation Board	Board 80 mm x 100 mm	iC-MFN EVAL MFN1D

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners