QDLASER QLD1061-3030 series

1030 nm DFB Laser Butterfly Package

Preliminary

C00095-03 March 2015

1. DESCRIPTION

The QLD1061-3030 is a 1030-nm distributed feedback (DFB) laser for use in seeder for fiber lasers and sensing applications. The laser is assembled into a 14-pin butterfly package with an optical isolator, a monitor PD and a thermo-electric cooler.

2. FEATURES

- Single longitudinal mode operation at 1030 nm
- Fiber-pigtailed 14-pin butterfly package with a TEC
- Optical isolator integration
- Polarization maintaining fiber integration
- CW/Pulse operation

3. APPLICATION

- Seeder for fiber lasers
- Sensing

4. ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATING	UNIT
Optical Output power	$P_{\rm f}$	50	mW
LD Forward Current	I _F	250	mA
LD Reverse Voltage	V _{RLD}	2	V
TEC Drive Current	I _{TEC}	2	А
TEC Drive Voltage	V _{TEC}	4.3	V
Operation Temperature	T _c	0 to 60	°C
Storage Temperature	T _{stg}	-40 to 85	°C
Lead Soldering Temperature (5 s)	T _{sld}	230	°C

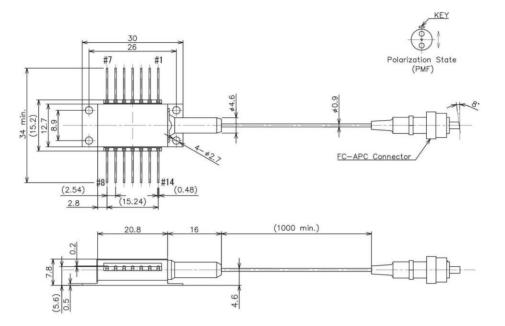
www.imm-photonics.de sales@imm-photonics.de Tel.: +49 89 / 3214120

QDLASER

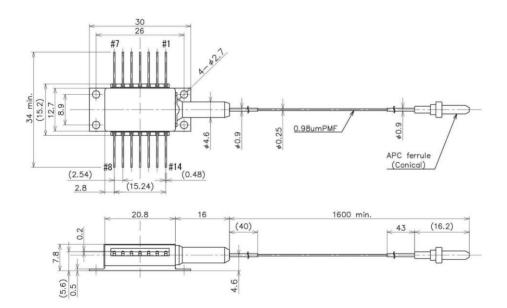
QLD1061-3030 series

5. OPTICAL AND ELECTRICAL CHARACTERISTICS

			$(T_{LD} = 2)$	25°C, unles	ss otherwis	e specified)
PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Peak Wavelength	λ_{p}	CW, $P_f = 30 \text{ mW}$	1025*	1030	1035*	nm
Temperature Coefficient of λ_p	$d\lambda_p/dT$	CW	-	0.08	-	nm/K
Current Coefficient of λ_p	$d\lambda_p/dI$	CW	-	0.01	-	nm/mA
Fiber Output Power	P _f	CW	30	-	-	mW
Threshold Current	I _{th}	CW	-	20	-	mA
Operation Current	I _{op}	CW, $P_f = 30 \text{ mW}$	-	150	200	mA
Operation Voltage	V _{op}	CW, $P_f = 30 \text{ mW}$	-	1.7	2.0	V
Sidemode Suppression Ratio	SMSR	CW, $P_f = 30 \text{ mW}$	-	40	-	dB
Polarization Extinction Ratio	PER	CW, P _f =30mW	15	20	-	dB
Monitor PD Current	Im	CW, P _f =30mW	50	100	1000	μΑ
Thermistor Resistance	Rth	$T_{LD} = 25^{\circ}C, B = 3900K$	9.5	10	10.5	kΩ
*D 1 1 (1 (1) C / 1						

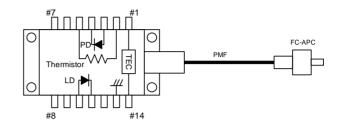

*Peak wavelength tolerance of +/- 1nm is available as an option.

6. PRODUCT PART NUMBER


Part Number	rt Number Fiber Type Fiber Diameter		Connector
QLD1061-3030	Polarization maintaining	900um	FC/APC
QLD1061-3030-11	fiber	250um	Ferrule

7. OUTLINE DRAWING

(a) 900um fiber diameter and FC/APC connector type (QLD1061-3030)



(b) 250um fiber diameter and ferrule type (QLD1061-3030-11)

8. PIN CONFIGURATION

No.	Description	No.	Description
1	TEC (+)	8	NC
2	Thermistor	9	NC
3	PD Anode	10	Laser Anode
4	PD Cathode	11	Laser Cathode
5	Thermistor	12	NC
6	NC	13	Case Ground
7	NC	14	TEC (-)

9. NOTICE

Safety Information

This product is classified as Class 3B laser product, and complies with 21 CFR Part 1040.10. Please do not take a look at laser lighting in operations since laser devices may cause troubles to human eyes. Please do not eat, burn, break and make chemical process of the products since they contain GaAs material.

Handling products

Semiconductor lasers are easily damaged by external stress such as excess temperature and ESD.

Please pay attention to handling products, and use within range of maximum ratings.

QD Laser takes no responsibility for any failure or unusual operation resulting from improper handling, or unusual physical or electrical stress.

RoHS

This product conforms to RoHS compliance related EU Directive 2011/65/EU.

Distributed by 🧵 Imm photonics

Ohmstrasse 4, 85716 Unterschleissheim, Germany www.imm-photonics.de sales@imm-photonics.de Tel.: +49 89 / 3214120

OD Laser, Inc.

Contact : info@qdlaser.com http://www.qdlaser.com Copyright 2012-2015 All Rights Reserved by OD Laser, Inc. Keihin Bldg. 1F 1-1 Minamiwatarida-cho, Kawasaki-ku, Kawasaki, Kanagawa Zip 210-0855 Japan All company or product names mentioned herein are trademarks or registered trademarks of their respective owners. Information provided in this data sheet is accurate at time of publication and is subject to change without advance notice.